Question

Problem 9.011 SI Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion pro

0 0
Add a comment Improve this question Transcribed image text
Answer #1

p/12820 4 Vilve 210 2 putas ac Pialbar Ti=3lok. V For Ti= 310k, 1=221.25 kJ/kg (Table A-22) ni T2 = 21018) (10):25-1 T2=551.For process procers 2-3 Was anstant volume heat addition. Com - (Us -Ue) = 1872.4 -397.83 Q23 - 1474.57 kJ/kg Process 34 W94by the wycielm Qilm wa cycle Way 9-276.98 + 1109.34 Wacle 928.36 kJ/kg 1673.92 kyllg Que or on boys 1474.57+199.35 tha 828-36

Add a comment
Know the answer?
Add Answer to:
Problem 9.011 SI Consider a modification of the air-standard Otto cycle in which the isentropic compression...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes...

    Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each replaced with polytropic processes having n = 1.35. The compression ratio is 10 for the modified cycle. At the beginning of compression, p1 = 1 bar and T1 = 310 K. The maximum temperature during the cycle is 2200 K. Determine: (a) the heat transfer and work in kJ per kg of air for each process in the modified cycle. (b) the...

  • Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes...

    Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each replaced with polytropic processes having n = 1.25. The compression ratio is 8 for the modified cycle. At the beginning of compression, p1 = 1 bar and T1 = 310 K. The maximum temperature during the cycle is 2200 K. Determine: (a) the heat transfer and work in kJ per kg of air for each process in the modified cycle. (b) the...

  • engine performance experiment (otto cycle) III.4 Isentropic Polytropic Processes The air-standard Otto cycle models bot...

    engine performance experiment (otto cycle) III.4 Isentropic Polytropic Processes The air-standard Otto cycle models both the compression and expansion phases of the combustion gases as isentropic. How well does this assumption hold up? From the same set of data used in III.1, plot a graph of log p versus log V (or ln p versus In V) From visual inspection of the graph obtained, are expansion and compression processes polytropic? If so, determine the polytropic indices. By comparing these values...

  • Problem 9.001 SI At the beginning of the compression process of an air-standard Otto cycle, p1...

    Problem 9.001 SI At the beginning of the compression process of an air-standard Otto cycle, p1 1 bar and T1 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1400 kJ/kg Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle (d) the mean effective pressure, in kPa.

  • At the beginning of the compression process of an air-standard Otto cycle, P1 = 1.0 bar,...

    At the beginning of the compression process of an air-standard Otto cycle, P1 = 1.0 bar, T1 = 290 K, V1 = 400 cm3. The maximum temperature in the cycle is 2200 K and the compression ratio is 8. Determine: a) the heat addition in kJ, b) the net work in kJ, c) the thermal efficiency, and d) the mean effective pressure, in bar.

  • 1. At the beginning of the compression process of an air-standard Otto cycle, P bar, T1...

    1. At the beginning of the compression process of an air-standard Otto cycle, P bar, T1 = 290 K, Vi = 400 cm. The maximum temperature in the cycle is 2200 K and the compression ratio is 8. Determine (a) the heat addition, in kJ (b) the net work, in kJ. (c) the thermal efficiency. (d) the mean effective pressure, in bar.

  • Problem 9.003 SI At the beginning of the compression process of an air standard Otto cycle,...

    Problem 9.003 SI At the beginning of the compression process of an air standard Otto cycle, p1 = 1 bar, T1 = 300 K. The maximum temperature in the cycle is 2250 K and the compression ratio is 9.8. The engine has 4 cylinders and an engine displacement of Vo = 2.4 L. Determine per cylinder: a) e) f) the volume at state 1. the air mass per cycle. the heat addition per cycle, in kJ. the heat rejection per...

  • At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar...

    At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 6 and the heat addition per unit mass of air is 1300 kJ/kg. Determine: (a) the maximum temperature of the cycle, in K. (b) the net work, in kJ/kg. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.

  • A gasoline engine operates on the air standard Otto cycle. The air intake to the engine...

    A gasoline engine operates on the air standard Otto cycle. The air intake to the engine is at 300K and 95kPa (State 1). The air is compressed in the engine to an unknown pressure. Heat is then added during combustion at an amount of 1100 kJ/kg. At the end of the heat addition process, the temperature reaches 2200K. Compute the following: (a) the temperature at the end of the compression process, (b) the volumetric compression ratio of this engine, (c)...

  • Use engineering methodology and show units calculations. An air standard Otto cycle at the initial condition...

    Use engineering methodology and show units calculations. An air standard Otto cycle at the initial condition of P,=1 bar, T,=290 °K, Vi= 400 cm?. The maximum temperature of the engine is 2200 °K and compression ratio is 8. The mass of air is assumed to be 4.8x104 kg. Assume isentropic process exits in both compression and expansion strokes. (a) Sketch the P-V and T-S diagram of the cycle (5%), (b) determine the total heat addition to the gas in kj...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT