Question

23. A block (m = 1.0 kg) is compressed against a spring (k = 800 N/m) a distance of 25 cm on a rough surface with uk = 2 and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mass of block im = 1.0kg k – 800 NIM Initial compression in the spring - 25cm - 0.25m ur - 0:2 d = 18 distance moved by the bwork done by forces Purperf - change kineda ehersy す Work done by gravity & work done by Spring force & Work done by friction

Add a comment
Know the answer?
Add Answer to:
23. A block (m = 1.0 kg) is compressed against a spring (k = 800 N/m)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...

    6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined plane. The spring, (spring constant 450 N/m) is compressed by 0.50 m.When released, the spring projects the block toward the top of the incline. The coefficient of kinetic friction between the block and the inclined plane is 0.3. (a) What is the speed of the block at the instant the block first returns to its equilibrium length? ans [3.9 m/s] (b) Calculate the speed...

  • A wooden block with mass 1.95 kg is placed against a compressed spring at the bottom...

    A wooden block with mass 1.95 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0degree (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.00 m up the incline from A, the block is moving up the incline at a speed of 6.15 m/s and is no longer in contact with the spring. The coefficient of kinetic between the...

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b) How far does the block travel up...

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b)How far does the block travel up the...

  • PHYS1030 Newtonian Mechanks QUESTION #10: A 22-kg block is held a rest against a spring of...

    PHYS1030 Newtonian Mechanks QUESTION #10: A 22-kg block is held a rest against a spring of force constant k # 930 N/m as shown below. Initially the spring is compressed a distance of 15 em. When the block is released, it slides across a surface that is frictionless except for a rough patch of width 60.0 cm that has a coefficient of kinetic friction μ.-0.34. Find the block's speed (m/s): (a) before crossing the rough patch b)after crossing the rough...

  • A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m

    A 2-kg block is pushed against a spring with spring-constant k 512 N/m, compressing it 0.25 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 53.1° (a) What is the speed of the block as it slides along the horizontal surface after having left the spring? (b) How far does the block travel up the incline before starting to slide back down?

  • A block of mass m is pushed against a spring of spring constant k. The spring...

    A block of mass m is pushed against a spring of spring constant k. The spring is compressed by a distance d, the block is then released. It is launched by the spring along a horizontal frictionless surface with a final speed v. A second block, this one having mass 9m is pushed against the same spring and released, gaining a final speed 3v. By what distance was the spring compressed in the second case?

  • Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant...

    Problem 2 A 0.5-kg block is pressed a distance d against a horizontal spring of constant 800 N/m. The block sits on a frictionless horizontal surface When the block is released from rest, it slides along the surface, its speed is 1.6 m/s when it leaves the spring (a) Calculate distance d. 4 cm Suppose that the sliding block (speed 1.6 m/s) crosses a rough section of the surface. The leugth of the section is 1m. The block has a...

  • A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°

    A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°, as shown in Figure A2.08. When released, the block is projected up the incline and the spring expands by 14.0 cm to its normal length. Using the law of conservation of energy, determine the maximum distance (d) traveled by the block up the incline,(a) in the absence of friction.(b)when the coefficient of kinetic friction between the block and...

  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT