Question

6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...

6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined plane. The spring, (spring constant 450 N/m) is compressed by 0.50 m.When released, the spring projects the
block toward the top of the incline. The coefficient of kinetic friction between the block and the inclined plane is 0.3.

(a) What is the speed of the block at the instant the block first returns to its equilibrium length? ans [3.9 m/s]
(b) Calculate the speed of the block at a displacement of 90 cm up the incline, measured from the end of the compressed spring. ans[3.0 m/s]
(c) Calculate the distance, measured along the inclined plane, from the equilibrium position of the spring to the farthest point that the block travels before coming to rest momentarily on the incline. ans [1.0 m]

0 0
Add a comment Improve this question Transcribed image text
Answer #1

***********************************************************************************************
Check the answer and let me know if you need anything else rgarding the answer....and if you find something wrong just let me know immediately... I will rectify the mistakes asap if any....

Add a comment
Know the answer?
Add Answer to:
6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°

    A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°, as shown in Figure A2.08. When released, the block is projected up the incline and the spring expands by 14.0 cm to its normal length. Using the law of conservation of energy, determine the maximum distance (d) traveled by the block up the incline,(a) in the absence of friction.(b)when the coefficient of kinetic friction between the block and...

  • A wooden block with mass 1.95 kg is placed against a compressed spring at the bottom...

    A wooden block with mass 1.95 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0degree (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.00 m up the incline from A, the block is moving up the incline at a speed of 6.15 m/s and is no longer in contact with the spring. The coefficient of kinetic between the...

  • A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m....

    A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m. Initially, the spring is compressed by a distance of 0.220 m, when the block is released from rest and travels along a horizontal frictionless surface before encountering a frictionless ramp, inclined at an angle of 37° above the horizontal. How far along the ramp does the block travel before momentarily coming to rest?

  • A spring (k= 570 N/m) is at the bottom of a 39 degree frictionless inclined plane....

    A spring (k= 570 N/m) is at the bottom of a 39 degree frictionless inclined plane. The spring is compressed 23 cm and a 2.2 kg mass is placed against the spring. The spring is released. Calculate the distance (in meter) up the incline that the mass travels before coming to a stop for the first time.

  • A block of mass m is placed in a smooth-bored spring gun at the bottom of an inclined plane

    A block of mass m is placed in a smooth-bored spring gun at the bottom of an inclined plane, such that it compresses the spring by an amount xc, as shown in the figure below. The spring has a spring constant k. The incline makes an angle θ with the horizontal and the coefficient of friction between the block and the inclined plane is μ. The block is released, exits the muzzle of the gun, and slides up the incline...

  • A 2-kg block is placed on a plane inclined at an angle of 30 to the...

    A 2-kg block is placed on a plane inclined at an angle of 30 to the horizontal and is connected to a spring fastened at the top of the plane. The spring is parallel to the incline and has a force constant of 100 N/m. The block is released from rest when the spring has its equilibrium length. If the block moves a distance of 10 cm before coming to an instantaneous rest, find the magnitude of the force of...

  • An inclined plane of angle 0 = 20.0° has a spring of force constant k =...

    An inclined plane of angle 0 = 20.0° has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P7.63. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance...

  • An inclined plane of angle θ = 20.0° has a spring of force constant k =...

    An inclined plane of angle θ = 20.0° has a spring of force constant k = 475 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in the figure below. A block of mass m = 2.25 kg is placed on the plane at a distance d = 0.282 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant...

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 520 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 21° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.16. In the initial position, where the spring is compressed by a distance of d = 0.14 m, the mass is at...

  • You push a 2.5 kg block against a spring, compressing the spring by 35 cm. Then...

    You push a 2.5 kg block against a spring, compressing the spring by 35 cm. Then you release the block, and the spring sends it sliding up the inclined plane. The spring constant is. k = 197 N/m and the coefficient of kinetic friction is, mu_k = 0.31, theta = 38 degree. How far along the incline does the block slide from the compressed position when it is released?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT