Question

A wooden block with mass 1.95 kg is placed against

0 0
Add a comment Improve this question Transcribed image text
Answer #1

n.거 Laith

Add a comment
Know the answer?
Add Answer to:
A wooden block with mass 1.95 kg is placed against a compressed spring at the bottom...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...

    6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined plane. The spring, (spring constant 450 N/m) is compressed by 0.50 m.When released, the spring projects the block toward the top of the incline. The coefficient of kinetic friction between the block and the inclined plane is 0.3. (a) What is the speed of the block at the instant the block first returns to its equilibrium length? ans [3.9 m/s] (b) Calculate the speed...

  • A small glider is placed against a compressed spring at the bottom of an air track...

    A small glider is placed against a compressed spring at the bottom of an air track that slopes upward at an angle of 31.0 ∘ above the horizontal. The glider has mass 7.00×10−2 kg . The spring has 590 N/m and negligible mass. When the spring is released, the glider travels a maximum distance of 1.80 m along the air track before sliding back down. Before reaching this maximum distance, the glider loses contact with the spring. a) What distance...

  • A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°

    A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°, as shown in Figure A2.08. When released, the block is projected up the incline and the spring expands by 14.0 cm to its normal length. Using the law of conservation of energy, determine the maximum distance (d) traveled by the block up the incline,(a) in the absence of friction.(b)when the coefficient of kinetic friction between the block and...

  • A block with mass m = 1.86 kg is placed against a spring on a frictionless...

    A block with mass m = 1.86 kg is placed against a spring on a frictionless incline with angle θ = 33.9° (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 25 N/cm, is compressed 28.1 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • A small glider is placed against a compressed spring at the bottom of an air track...

    A small glider is placed against a compressed spring at the bottom of an air track that slopes upward at an angle of 46.0 ∘ above the horizontal. The glider has mass 9.00×10−2 kg . The spring has 670 N/m and negligible mass. When the spring is released, the glider travels a maximum distance of 1.80 m along the air track before sliding back down. Before reaching this maximum distance, the glider loses contact with the spring. the distance of...

  • A block with mass m = 1.47 kg is placed against a spring on a frictionless...

    A block with mass m = 1.47 kg is placed against a spring on a frictionless incline with angle 0 = 37.10 (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 19 N/cm, is compressed 22.5 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m

    A m= 2.00 kg block is pushed against a spring with negligible mass and force constant k= 300. N/m, compressing it d= 0.250 m. When the block is released, it moves along a frictionless, horizontal surface and then up an incline with slope 37.0° and a coefficient of kinetic friction of 0.320. A)What is the speed of the block as it slides along the horizontal surface after having left the spring?B) How far does the object travel up the incline before...

  • You push a 2.5 kg block against a spring, compressing the spring by 35 cm. Then...

    You push a 2.5 kg block against a spring, compressing the spring by 35 cm. Then you release the block, and the spring sends it sliding up the inclined plane. The spring constant is. k = 197 N/m and the coefficient of kinetic friction is, mu_k = 0.31, theta = 38 degree. How far along the incline does the block slide from the compressed position when it is released?

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b) How far does the block travel up...

  • A 2.00 kg block is pushed against a spring with negligible mass and force constant k=...

    A 2.00 kg block is pushed against a spring with negligible mass and force constant k= 310 N/m, compressing it 0.220 m. When the block is released, it moves along a horizontal rough surface (with a coefficient of kinetic, μk=  0.125 ) for the distance of d= 2.00 m and then up a frictionless incline. a) What is the speed of the block at the end of the horizontal surface? (I got 1.61) b)How far does the block travel up the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT