Question

Steam at T = 300C flows in a cast iron pipe shell with thermal conductivity k1=80W/mC,...

Steam at T = 300C flows in a cast iron pipe shell with thermal conductivity k1=80W/mC, inner and outer diameter D1 = 5cm, and D2 =6cm respectively, and length L = 1m (notice that the cast iron pipe shell is a zone of conduction physically realized by the space between two concentric cylinders). The heat transfer coefficient for the steam inside the pipe is h1 = 60 W/m2. Furthermore, heat is lost to the surroundings at T2 = 5C through convection with a heat transfer coefficient h2 = 20 W/m2. Determine the rate of heat loss and the temperature drop across the pipe shell (assume steady state conditions and absence of chemical/nuclear reactions).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

kz Bowlmk DI= 5cm do 2.5cm. D₂ = bein, d. = 8cm L=1m 300°c sowik zow/w 7 =500 +273 2573K T = 5+ 273-278K m - T.D, L = T (0.05

Add a comment
Know the answer?
Add Answer to:
Steam at T = 300C flows in a cast iron pipe shell with thermal conductivity k1=80W/mC,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of...

    Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of 16 W m-1 K -1 whose inner and outer diameters are 5 and 6 cm respectively. The pipe is covered with 3 cm think insulation having a thermal conductivity of 0.035 W m-1 K -1 . The combined convection and radiation heat transfer coefficient at the outside surface of the insulation is 20 W m-2 K -1 and the surroundings are at 10 °C....

  • Problem 3 (30): Steam at Too,1 340 °C flows in a cast iron pipe [k- 80 W/m.°C] whose inner and outer diameter are Di 6 cm and D2 -8 cm, respectively. The pipe is covered with a 4-cm thick glass wool...

    Problem 3 (30): Steam at Too,1 340 °C flows in a cast iron pipe [k- 80 W/m.°C] whose inner and outer diameter are Di 6 cm and D2 -8 cm, respectively. The pipe is covered with a 4-cm thick glass wool insulation [k-0.05 W/ m°C]. Heat is lost to the surroundings at Too,2 - 21°C by natural convection and radiation, with a combined heat transfer coefficient of h- 18 W/m2 °C. Taking the heat transfer coefficient inside the pipe to...

  • please solve without copying solutions from this website ..give a clear solution Example 3 Steam at...

    please solve without copying solutions from this website ..give a clear solution Example 3 Steam at T1320°C flows in a cast iron pipe (k 80 W/m.K) whose inner and outer diameters are D1 = 5 cm and D2 = 5.5 cm, respectively. The pipe is covered with 3- cm-thick glass wool insulation with k = 0.05 W/m.K. Heat is lost to the surroundings at T5°C by natural convection and radiation with a combined heat transfer coefficient of h2 18 W/m2.K....

  • B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and...

    B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and outer diameter of the pipe are 8 cm and 6 cm respectively with pipe length of 20-m. The thickness of gypsum plaster which wraps the pipe is 4 cm. The heat transfer coefficient of the inner pipe and outer insulation are 800 W/m2.°C and 200 W/m2.°C with inner pipe temperature of 200°C and outer insulator temperature of 10°C. The thermal conductivity of the pipe...

  • A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of...

    A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of 5.5 cm and a thermal conductivity of 15 W/m˚C transfers steam at 320˚C from one location to another. The pipe is insulated with a 3 cm thick glass wool having a thermal conductivity of 0.038 W/m˚C. Heat is lost to the surroundings by natural convection and radiation at a rate of 15 W/m2˚C and the heat transfer coefficient inside the pipe is 80 W/m2˚C....

  • art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe...

    art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe (kr 15 W/m "C) whose inner and outer diameters are 5 em and 5.5 cm, respectively. The pipe is covered with 3-cm-thick glass wool insulation (k 0.038 W m·°C). Heat is lost to the surroundings at 5°C by natural convection and radiation, with a combined natural convection and radiation heat transfer coefficient of hi-15 w/m.。C. The convective heat transfer coefficient inside the pipe to...

  • HW3.3. A cylindrical steel pipe is used to carry water steam with an averaged heat transfer...

    HW3.3. A cylindrical steel pipe is used to carry water steam with an averaged heat transfer coefficient of h 150 W/m2-K at Ti- 100 °C. The steel pipe goes through the roof of a factory where the ambient temperature is 23°C (To), with a natural heat convection coefficient of 5 W/m2-K. The inner and outer diameters of the steel pipe are 2 cm and 2.2 cm, respectively, and thermal conductivity of the steep pipe is k, -20 W/m-K To prevent...

  • 1. 1.08x106 grams/h of a superheated fluid flows through a pipe in a power plant. The...

    1. 1.08x106 grams/h of a superheated fluid flows through a pipe in a power plant. The pipe is 1000 cm long, has an inner diameter of 0.05m and a wall thickness of 0.6 cm. The pipe has a thermal conductivity of 0.0017 kW/mK, and the inner pipe surface is at a uniform temperature of 393K. The temperature drop between the inlet and exit of the pipe is 7K, and the constant pressure specific heat of vapor is 2190 J/kgK. If...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT