Question

A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of...

A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of 5.5 cm and a thermal conductivity of 15 W/m˚C transfers steam at 320˚C from one location to another. The pipe is insulated with a 3 cm thick glass wool having a thermal conductivity of 0.038 W/m˚C. Heat is lost to the surroundings by natural convection and radiation at a rate of 15 W/m2˚C and the heat transfer coefficient inside the pipe is 80 W/m2˚C. The rate of heat loss is to be determined

(a) Adopt a best practice approach, illustrate the problem in a diagrammatic form and identify the key assumptions that can be made. (6 marks)

(b) Determine the rate of heat lost from the steam per unit length (10 marks)

(c) Determine the temperature drops across the pipe shell and insulation (4 marks)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

please ask if any doubt

Please rate by thums up

Add a comment
Know the answer?
Add Answer to:
A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe...

    art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe (kr 15 W/m "C) whose inner and outer diameters are 5 em and 5.5 cm, respectively. The pipe is covered with 3-cm-thick glass wool insulation (k 0.038 W m·°C). Heat is lost to the surroundings at 5°C by natural convection and radiation, with a combined natural convection and radiation heat transfer coefficient of hi-15 w/m.。C. The convective heat transfer coefficient inside the pipe to...

  • Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of...

    Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of 16 W m-1 K -1 whose inner and outer diameters are 5 and 6 cm respectively. The pipe is covered with 3 cm think insulation having a thermal conductivity of 0.035 W m-1 K -1 . The combined convection and radiation heat transfer coefficient at the outside surface of the insulation is 20 W m-2 K -1 and the surroundings are at 10 °C....

  • Problem 3 (30): Steam at Too,1 340 °C flows in a cast iron pipe [k- 80 W/m.°C] whose inner and outer diameter are Di 6 cm and D2 -8 cm, respectively. The pipe is covered with a 4-cm thick glass wool...

    Problem 3 (30): Steam at Too,1 340 °C flows in a cast iron pipe [k- 80 W/m.°C] whose inner and outer diameter are Di 6 cm and D2 -8 cm, respectively. The pipe is covered with a 4-cm thick glass wool insulation [k-0.05 W/ m°C]. Heat is lost to the surroundings at Too,2 - 21°C by natural convection and radiation, with a combined heat transfer coefficient of h- 18 W/m2 °C. Taking the heat transfer coefficient inside the pipe to...

  • B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and...

    B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and outer diameter of the pipe are 8 cm and 6 cm respectively with pipe length of 20-m. The thickness of gypsum plaster which wraps the pipe is 4 cm. The heat transfer coefficient of the inner pipe and outer insulation are 800 W/m2.°C and 200 W/m2.°C with inner pipe temperature of 200°C and outer insulator temperature of 10°C. The thermal conductivity of the pipe...

  • Problem 1. Steam at 120°C is transported in a long 8" outer diameter pipe. Its outer surface is c...

    Problem 1. Steam at 120°C is transported in a long 8" outer diameter pipe. Its outer surface is covered with a 1" thick fiberglass (thermal conductivity, 0.05 W/(mK)) insulation. When the outer temperature is 0°C, the rate of condensation of steam is measured to equal 0.06 g per meter of the pipe length. Estimate the heat transfer coefficient. The heat of vaporization of the steam is 2600 J/g. The resistance to the heat transfer through the pipe wall may be...

  • QUESTION 1 (10 marks) a) Write the Newton's law of heat convection in fluid using convection heat transfer coef...

    QUESTION 1 (10 marks) a) Write the Newton's law of heat convection in fluid using convection heat transfer coefficient, h (Wm2.K). Please explain the equation in terms of its driving force and resistancC (2 marks) (POUCOI/C2) b) Define the heat transfer rate, q,by inside and outside convection and wall conduction considering a stainless steel cylindrical pipe (inside radius, ri and outer radius, ) with fiberglass insulator (radius, s) in ą steady state condition as shown in Figure Q11 Steam with...

  • I. Steam at 220°C İs transported through an AISI 101 0 carbon steel pipe. The inside...

    I. Steam at 220°C İs transported through an AISI 101 0 carbon steel pipe. The inside and outside diameters of the pip glass pipe insulation. e are 12 and 13 cm respectively. The pipe is wrapped with 5 cm thick cellular The ambient air temperature is 8°C. The inside and outside convection heat nts are 95 and 15 W/m2-K respectively. The thermal conductivity of the pipe is 60 W/m-K and for the insulation it is 0.072 W/m-K a. Construct the...

  • please solve without copying solutions from this website ..give a clear solution Example 3 Steam at...

    please solve without copying solutions from this website ..give a clear solution Example 3 Steam at T1320°C flows in a cast iron pipe (k 80 W/m.K) whose inner and outer diameters are D1 = 5 cm and D2 = 5.5 cm, respectively. The pipe is covered with 3- cm-thick glass wool insulation with k = 0.05 W/m.K. Heat is lost to the surroundings at T5°C by natural convection and radiation with a combined heat transfer coefficient of h2 18 W/m2.K....

  • Assist The inner and outer surfaces of a 6-mx7-m brick wall of thickness 40 cm and...

    Assist The inner and outer surfaces of a 6-mx7-m brick wall of thickness 40 cm and thermal conductivity 0.55 W/m°C are maintained at temperatures of 26°C and T°C, respectively Determine the rate of heat transfer through the wall, in W. Chec Print Questi Report Brick wall 28 C

  • Heat Transfer -A wall 20 cm thick is to be constructed from material that has an...

    Heat Transfer -A wall 20 cm thick is to be constructed from material that has an average thermal conductivity of 2 W/m C. The wall is to be insulated with 5cm material having an average thermal conductivity of 0.5W/m C. Assuming that the inner and outer surface temperatures of the insulated wall are 200 and 20°C, calculate the heat transfer per unit area and the intermediate Temperature between the insulation and the wall.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT