Question

-A wall 20 cm thick is to be constructed from material that has an average thermal conductivity of 2 W/m C. The wall is to be

Heat Transfer

0 0
Add a comment Improve this question Transcribed image text
Answer #1

t wall = 20cm troulotion = sem Kwall = 2 w/m.k Kinsulation = 0.5 w/mk. Thermal circuit of the setup : Ri Re Tinter ho Pia RosDE :D = 200 - 20 (2)A) %= goo Wmat - An goo W/m2 Heat transfer per whit area is her intermediate temperature be T Now, P=. At

Add a comment
Know the answer?
Add Answer to:
Heat Transfer -A wall 20 cm thick is to be constructed from material that has an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of...

    A stainless pipe having an inner wall thickness of 5 cm, an outer wall thickness of 5.5 cm and a thermal conductivity of 15 W/m˚C transfers steam at 320˚C from one location to another. The pipe is insulated with a 3 cm thick glass wool having a thermal conductivity of 0.038 W/m˚C. Heat is lost to the surroundings by natural convection and radiation at a rate of 15 W/m2˚C and the heat transfer coefficient inside the pipe is 80 W/m2˚C....

  • A plane wall is composed of two materials. Material A has a uniform heat generation of...

    A plane wall is composed of two materials. Material A has a uniform heat generation of 100 kW/m3, a thermal conductivity of 50 W/mK, and a thickness of 10 cm. The inner surface of material A is well insulated. The other surface of material A is connected to Material B which has no generation with a thermal conductivity of 100 W/mK and a thickness of 20 cm. The outer surface of material B is cooled by ambient air at 300...

  • For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and...

    For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and the insulation material is mounted between four layers of carbon steel (2 mm thickness), the carbon layers are separated by a 2 mm air gap (kair-0.025 W/mK). Figure 3, the thermal conductivity of the carbon steel is (k-15.5 W/m.K). The temperature inside the wall is maintained at 6 °C. The environmental temperature is 24°C. The engineer would like to avoid condensation occurring at outer...

  • The wall of a house is 3 m high, 10 m long and 30 cm thick;...

    The wall of a house is 3 m high, 10 m long and 30 cm thick; it has an effective thermal conductivity of 10 W/m K. The outer surface of the wall has an emissivity of 0.75. On a winter night, the outer surface of this wall is at a temperature of 0 °C and the air is at a temperature of –10 °C. The heat transfer coefficient for the outside wall is 8 W/m2 K. The outside wall also...

  • Heat transfer at a rate of 500 W through a wall with a thermal conductivity of...

    Heat transfer at a rate of 500 W through a wall with a thermal conductivity of 1.7 W/mK. The wall is 4-m high, 3-m wide, and 50-cm thick. If the inner surface of the wall is at 20 degrees Celsius, determine the temperature at the midplane of the wall. a. 7.7 degrees Celsius b. 53.5 degrees Celsius c. 13.9 degrees Celsius d. 127 degrees Celsius

  • A concrete wall of a house is 45 cm thick and has a surface area 20m...

    A concrete wall of a house is 45 cm thick and has a surface area 20m x 5 m. The inside temperature of the wall is 47 °C and the outside air temperature is 14 °C. Thermal conductivity of the concrete wall is 0.8 W/mK. Calculate the heat transfer rate through the wall by conduction and its thermal resistance.

  • [6] A 20-cm thick wall of a house made of brick (k = 0.72W/m. C) is...

    [6] A 20-cm thick wall of a house made of brick (k = 0.72W/m. C) is subjected to inside air at 22.C with a convection heat-transfer coefficient of 15 W/m2. C. The inner surface temperature of the wall is 18 C and the outside air temperature is -1 °C. Determine the outer surface temperature of the wall and the heat-transfer coefficient at the outer surface.

  • (b) The brick wall of a building has dimensions of 4 m by 10 m, and it is 15 cm thick with a coefficient of thermal con...

    (b) The brick wall of a building has dimensions of 4 m by 10 m, and it is 15 cm thick with a coefficient of thermal conductivity of 0.8 W.m1ec1. How much heat flows through the wall in a 12-hour period when the average inside and outside temperatures are 20 °C and 5 °C respectively? Will a 2 kW heater operating in the room compensate for the heat loss? Justify your answer. A layer of insulating material of thickness 5...

  • QUESTION 1 Quarter of the area of a 5m x 3m outside wall of a house...

    QUESTION 1 Quarter of the area of a 5m x 3m outside wall of a house is made of glass windows. The wall is 15 cm thick and has an average thermal conductivity of 0.8 W/m K. The window glass is 8 mm thick and has an average thermal conductivity of 0.15 W/m K. On a winter day the inside temperature of the wall and the glass is 20°C, and the outside air temperature is -10°C. The outside convection heat...

  • Consider a 4 m high, 6 m wide and 0.17 m thick wall whose thermal conductivity is k = 0.8 W/m.oC....

    Consider a 4 m high, 6 m wide and 0.17 m thick wall whose thermal conductivity is k = 0.8 W/m.oC. On a certain day, the temperatures of the inner and the outer medium close to the wall are measured to be 14oC and 6oC, respectively. Both inner and outer surfaces are subjected to convection heat transfer. Assume that the convection heat transfer coefficient is the same for the two surfaces h = 5 W/m2 ∙ °C. 1. Draw the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT