Question

A 16-kg block is attached to spring A and connected to spring B by a cord...

A 16-kg block is attached to spring A and connected to spring B by a cord and pulley. The block is held in the position shown with both springs unstretched when the support is removed and the block is released with no initial velocity. The constant of each spring is 2 kN/m.

Determine the maximum velocity achieved by the block.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ㄥ w-kala)-hole (27) =0 16.9.si-2103 (71)_ 2x1028 (27) 2 in a

Add a comment
Know the answer?
Add Answer to:
A 16-kg block is attached to spring A and connected to spring B by a cord...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • A 16 kg block is attached to a cord that is wrapped around the rim of...

    A 16 kg block is attached to a cord that is wrapped around the rim of a wheel of radius 2 m and its hangs vertically, as shown. 1 9 16 CU 2. 3.9 4 9 m 32 The rotational inertia of the wheel is 32 kg mº. When the block is released and the cord unwinds, the magnitude of the down- ward acceleration

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant...

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 520 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 21° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.16. In the initial position, where the spring is compressed by a distance of d = 0.14 m, the mass is at...

  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force...

    A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 300 N/m. The block is pulled from its equilibrium position at x = 0 m to a displacement x = + 0.090 m and released from rest t=0 The block then executes SHM along the x-axis horizontal. (a) What is the maximum acceleration and velocity?

  • Two blocks are attached to one another, as shown, by means of a massless cord that...

    Two blocks are attached to one another, as shown, by means of a massless cord that passes over a massless frictionless pulley. Block 1 (mass 10 .0 kg ) is connected to a spring with spring constant 100 N/m, and block 2 (mass 20 .0 kg ) sits on a frictionless ramp that makes an angle 30 .0

  • A block of mass m = 2.0 kg is attached to a Hooke’s-law spring with force...

    A block of mass m = 2.0 kg is attached to a Hooke’s-law spring with force constant k = 8 . 0 N / m and is on a frictionless horizontal surface, as shown in the figure below. The block is released from rest at position x i . As the block passes through the equilibrium point at x = 0, it moves with a speed of 8.0 m/s. What is the value, in m, of the initial position, x...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT