Question

3. You are to wait for a bus to arrive. The bus arrives every 30 minutes, but you dont know the exact time it will arrive. Thus, you can wait any time between 0 and 30 minutes, and you believe all wait times are equally likely. Let X be the random variable of the amount of time in minutes vou will wait for the bus.

a) Say you wait for the bus on two independent days. What is the probability that you wait more than 20 minutes on both days? What about the probability of waiting more than 20 minutes on just one of the days?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let x denode the Woia Hime or the bus Also waiting. time is between 0dnd 30 minu and all wai tithes ore euay Jike iston buhim

om both dayy) pmone than 20 minu O-20 0-20 3 0 30 3 o me, the pro bo bi lity that yon wai thn 24 minutes an botb daysis Prol

Add a comment
Know the answer?
Add Answer to:
a) Say you wait for the bus on two independent days. What is the probability that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. The University of Southwest Arizona provides bus transportation services to students while they are on...

    2. The University of Southwest Arizona provides bus transportation services to students while they are on campus. A bus arrives at the North Main Street and College Drive stop every 30 minutes, between 6 in the morning and 11 at night during the week. Students arrive at the stop at random times. The time a student waits has a uniform distribution of 0 to 30 minutes. A. Draw a graph of the distribution. B. Show that the area of this...

  • You are waiting at a bus stop and can take any one of two buses Bus...

    You are waiting at a bus stop and can take any one of two buses Bus 1 or Bus 2. Bus 1 comes every 5 minutes and Bus 2 every 10 minutes. Further assume that the waiting times are memoryless in the sense that the amount of time since the previous bus arrived does not affect how much time to wait until the next bus comes and that the waiting times for each of the three buses are independent. (a)...

  • 2. The 46A bus leaves the terminus every 10 minutes exactly. For this reason, for any individual who arrives at a bus s...

    2. The 46A bus leaves the terminus every 10 minutes exactly. For this reason, for any individual who arrives at a bus stop on the route, his minimum waiting time is 0 minutes and his maximum waiting time is 10 minutes, and between these two times, all possible waiting times are equally likely. Write down the probability density function for waiting times on the bus route and draw the distribution. What is the expected waiting time? What is the standard...

  • 2. Suppose buses arrive at a bus stop according to an approximate Poisson process at a...

    2. Suppose buses arrive at a bus stop according to an approximate Poisson process at a mean rate of 4 per hour (60 minutes). Let Y denote the waiting time in minutes until the first bus arrives. (a) (5 points) What is the probability density function of Y? (b) (5 points) Suppose you arrive at the bus stop. What is the probability that you have to wait less than 5 minutes for the first bus? (c) (5 points) Suppose 10...

  • A bus comes by every 14 minutes. The times from when a person arives at the...

    A bus comes by every 14 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 14 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. c. The probability that the person will wait more than 4 minutes is _____ d. Suppose that the person has already been waiting for 0.5 minutes. Find the probability that the...

  • The bus arrives every 15 minutes starting at 8:00am and leaves immediately. You arrive at the...

    The bus arrives every 15 minutes starting at 8:00am and leaves immediately. You arrive at the bus stop with a uniform distribution between 8:05am and 8:30am. Given that the bus arrival time and the time that you arrive at the bus stop are independent, what is the PDF of your wait time? Graph the PDF of your wait time.

  • A person arrives at a bus stop each morning. The waiting time, in minutes, for a...

    A person arrives at a bus stop each morning. The waiting time, in minutes, for a bus to arrive is uniformly distributed on the interval (0,15). a. What is the probability that the waiting time is less than 5 minutes? b. Suppose the waiting times on different mornings are independent. What is the probability that the waiting time is less than 5 minutes on exactly 4 of 10 mornings?

  • 3. You are waiting at a bus stop and can take any one of two buses...

    3. You are waiting at a bus stop and can take any one of two buses Bus 1 or Bus 2. Bus 1 comes every 5 minutes and Bus 2 every 10 minutes. Further assume that the waiting times are memoryless in the sense that the amount of time since the previous bus arrived does not affect how much time to wait until the next bus comes and that the waiting times for each of the three buses are independent....

  • A bus comes by every 15 minutes. The times from when a person arives at the...

    A bus comes by every 15 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 15 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. a. The mean of this distribution is b. The standard deviation is c. The probability that the person will wait more than 5 minutes is d. Suppose that the person has...

  • A bus comes by every 13 minutes. The times from when a person arives at the...

    A bus comes by every 13 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 13 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible. a. The mean of this distribution is b. The standard deviation is ? c. The probability that the person will wait more than 7 minutes is ? d. Suppose that the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT