Question

Term brua 2019 Instructor: Ahnet A 1. Determine the Laplace transform and the associated region of convergence and pole-zero

0 0
Add a comment Improve this question Transcribed image text
Answer #1

wen Drs even χ(t) CHOn St 具ヒ一.St t- dlt (S-2 Cs-3) S-3 CS-2) 2 S-2 The sagienThus The Laplae Trankheom et The Pole zero PLot 3 Re -2/티 - St X(t) e dt 6 (1-2)じ 吣 -S+2) (st2)on Simpli tication -S-2)と 2- SY-4) to The The -tota 丁 pole- ero plot functtomC) The Expre RRIOn oelRe Ce Tsan unchon St hus The Laplace fun Chon (t)な Pole- Ze plot Fer This funCtiond) X(t) &(t) +t) Apply Laplac Tranosn -to The Function Xit) pole-zero PLot6 The System tun cionali The in The CaRual Lineas Time avasie Stem The input -to The System r xt) e APply The Laplacr Transte-t s) The Respode o givenytemf Consides equations G) and k-) 一2. ia The Tnter ScctionRocs Apply paun aracn3 Equate The Co-ebients ele - 2. Then 25From 2from ea2 2 lace Tronserm 5 2 etult)ptot e t) too0 2 000 3000 ytt) uoc 6000 6000 -800이Note_ As time Tg limited able -to irn T am The Remaininq Que stion Separate Thank you

Add a comment
Know the answer?
Add Answer to:
Term brua 2019 Instructor: Ahnet A 1. Determine the Laplace transform and the associated region of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • Problem 3. The input and the output of a stable and causal LTI system are related...

    Problem 3. The input and the output of a stable and causal LTI system are related by the differential equation dy ) + 64x2 + 8y(t) = 2x(t) dt2 dt i) Find the frequency response of the system H(jw) [2 marks] ii) Using your result in (i) find the impulse response of the system h(t). [3 marks] iii) Find the transfer function of the system H(s), i.e. the Laplace transform of the impulse response [2 marks] iv) Sketch the pole-zero...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • Problem 6 (20 pts) Suppose that the impulse response of a causal LTI system has a...

    Problem 6 (20 pts) Suppose that the impulse response of a causal LTI system has a Laplace transform which is given by 5+1 H(3) and that the input to this system is x(t) = ell! $+ 25 +2 a) Determine the Laplace transform of the output y(t), along with its associated region of convergence. (12 pts) b) Determine the output y(t). (8 pts)

  • 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a c...

    1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a careful sketch of the frequency response magnitude, i.е., IH(ew), of this system for lwl S T. Label your sketch! 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this...

  • 1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero...

    1. A discrete-time LTI system has the system function H() given below: (a) Sketch the pole-zero plot for this system How many possible regions of convergence (ROCs) are there for H(). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to. (b) Which ROC (or ROCs) correspond to a stable system Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to...

  • (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when...

    (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when the input is (tsin(t) by using the Fourier Transform method. 3. Fourier Transforms: LTI Systems Described by LCCDE (35 pts) (a) Consider a causal (meaning zero initial conditions) LTI system represented by its input-output relationship in the form of a differential equation:-p +3讐+ 2y(t)--r(t). i....

  • A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the...

    A discrete-time LTI system has the system function H(z) given below: 2 H(z (a) Sketch the pole-zero plot for this system. How many possible (ROCs) are there for H(z). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to (b) Which ROC (or ROCs) correspond to a stable system? Why? (c) Which ROC (or ROCs) correspond to a causal system? Why? (d) Write a difference equation that relates the input to the output...

  • Problem 3 (30 points) An LTI system has an impulse response hin], whose z-transform equals 1-1...

    Problem 3 (30 points) An LTI system has an impulse response hin], whose z-transform equals 1-1 1. List all the poles and zeros of H(2). Sketch the pole-zero plot.. 2. If this system is causal, provide the ROC of H(2) and the expression of hin. case, is this system also stable? 3. If the ROC of H(z) does not exist, provide and the expression of hn.

  • Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) =...

    Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) = ?? ?2????(??). A. (3 points) Determine ??(??) and ??(??) and the ROCs B. (3 points) Using the convolutional property of the Laplace transform, determine ??(??), the Laplace transform of the output, ??(??) C. (3 points) From the answer of part B, find ??(??) 9 points) Consider the LTI system with input x(t)eu(t) and the impulse response h(t)-e-2u(t) A. 3 points) Determine X(s) and H(s)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT