Question

2. (25 points) A spherical metal ball of radius ris heated in an oven to a temperature of T; throughout and is then taken out
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ASSUMPTIONS :

1. Heat transfer process is given as one dimensional.

2. Heat transfer is given to be transient.

3. Thermal conductivity is constant.

4. Heat generation is absent.

5. At r=ro i.e., at outer surface of sphere when kept in water it undergoes convection process.

The heat conduction equation and boundary conditions are represented in below images;

sol: - Given, Rodius Heated Temperature Ti Water Temperature - Too Heat Transfer Coefficient = h Thermal Conductivity = k K G@ 2 JT dr SC IT K ot :. We know that lz K pc. where, a Thermal diffusivity diffusivity (not) 8 → Density (kg m3 Specific heat

Add a comment
Know the answer?
Add Answer to:
2. (25 points) A spherical metal ball of radius ris heated in an oven to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C...

    Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C and 100°C, respectively. Determine the rate of heal transfer by radiation between the plates in Wim and the radiative heat transfer coefficient in W/m K ) 12 Write down the one-dimensional sent heal conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each variable represents 13 Write down the one-dimensional transient heat conduction...

  • (1) A sphere of decaying radioactive material of radius ro produces heat at a rate of q"" (W/m3)....

    (1) A sphere of decaying radioactive material of radius ro produces heat at a rate of q"" (W/m3). The sphere is contained in a spherical shell of graphite of outside radius r1. The outside surface of the graphite is cooled uniformly by flowing air of temperature To. The heat transfer coefficient at the outside surface is h. The constant thermal conductivities of the radioactive material and the graphite are ko and ki, respectively. Densities and heat capacities are ρο, co...

  • Natural gas is transmitted by a spherical tank with an inner radius of ri and outer...

    Natural gas is transmitted by a spherical tank with an inner radius of ri and outer radius of ro. The tank material is stainless steel that has a thermal conductivity of k. The inner surface temperature is at Tw, and the outer surface dissipating heat by convection with a heat transfer coefficient h into the ambient air at temperature T∞. a) Formulate the conduction heat transfer problem. b) Develop an expression for temperature distribution T(r) within the tank material. c)...

  • Heat transfer

    Consider a spherical container of inner radius r1, outer radius r2, and thermal conductivity k. Express the boundary condition on the inner surface of thecontainer for steady one-dimensional conduction for the following cases:(i) specified temperature of 50°C,[2 Marks](ii) specified heat flux of 45 W/m2 toward the center,[2 Marks](iii) convection to a medium at T∞ with a heat transfer coefficient of h.[2 Marks]

  • The heat that is conducted through a body must frequently be removed by other heat transfer...

    The heat that is conducted through a body must frequently be removed by other heat transfer processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature T. The conductivity of the aluminum fin (k) and coefficient of heat convection of...

  • 1) 2) 3) PROJECT #1 (2.5 Marks): The heat that is conducted through a body must...

    1) 2) 3) PROJECT #1 (2.5 Marks): The heat that is conducted through a body must frequently be removed by other heat transter processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width Z 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature 1. The conductivity of the aluminum...

  • 3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has...

    3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has a diameter D= 50 mm and length L= 1 m. During the process, the oven wall temperature is fixed at Tsur=800 K, and the hot air is blowing with a temperature T.= 500 K and an average heat transfer coefficient h=50 W/m²K. Assuming the filament surface is opaque and diffuse, and it has a spectral emissivity as shown below: (25 pts) The oven walls behave...

  • list the assumptions (if appropriate), provide a sketch (if appropriate) A spherical nuclear fuel pellet consists of a...

    list the assumptions (if appropriate), provide a sketch (if appropriate) A spherical nuclear fuel pellet consists of a uranium core (thermal conductivity ku) of radius R with uniform internal energy generation q, surrounded by a layer of protective cladding (thermal conductivity ke) that does not have internal energy generation but has a thickness of t. The pellet is immersed in a large fluid bath with a temperature To and convection coefficient h. (a) Starting from the heat diffusion equation in...

  • Question You are studying heat transfer through a spherical shell container with a thermal conductivity k....

    Question You are studying heat transfer through a spherical shell container with a thermal conductivity k. The inner and outer radii are identified as a and b, respectively. The inside surface of the shell is exposed to a constant heat flux in the outward direction. The outside surface temperature of the container is measured at Note that only the variables values provided in the problem statement are known. Assume steady one-dimensional radial heat transfer a. Give the mathematical formulation of...

  • 3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has...

    A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has a diameter \(\mathrm{D}=50 \mathrm{~mm}\) and length \(\mathrm{L}=1 \mathrm{~m}\). During the process, the oven wall temperature is fixed at \(\mathrm{T}_{\text {sur }}=800 \mathrm{~K}\), and the hot air is blowing with a temperature \(\mathrm{T}_{\infty}=500 \mathrm{~K}\) and an average heat transfer coefficient \(\bar{h}=50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\).Assuming the filament surface is opaque and diffuse, and it has a spectral emissivity as shown below: (25 pts)The oven walls...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT