Question

4. (12 pts) A block of mass, M, rests on a horizontal, frictionless surface and is attached to a spring with a spring constan
0 0
Add a comment Improve this question Transcribed image text
Answer #1

tintio 머

Add a comment
Know the answer?
Add Answer to:
4. (12 pts) A block of mass, M, rests on a horizontal, frictionless surface and is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The oth...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall. A second block with mass m rests on top of the first block. The coefficient of static friction between the a blocks is μs. a) Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. b) Suppose the coefficient of...

  • A 400 g block is attached to a spring on a frictionless horizontal surface. The block...

    A 400 g block is attached to a spring on a frictionless horizontal surface. The block is pulled to stretch the spring by 7cm and then gently released. As the block passes through the equilibrium position for the first time, its velocity is 1.5 m/s. What is the amplitude and period of the oscillation?

  • A block with mass M rests on a frictionless surface and is connected to a horizontal...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall (Fig. P14.68). A second block with mass m rests on top of the first block. The coefficient of static friction between the blocks is ms. Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. Suppose the two blocks are...

  • 1. A 500 g block is attached to a spring on a frictionless horizontal surface. The...

    1. A 500 g block is attached to a spring on a frictionless horizontal surface. The block is pulled to stretch the spring by 10 cm, then is gently released. A short time later, as the block passes through the equilibrium position, its speed is 1.0 m/s. a) What is the amplitude of the oscillation? b) What is the phase constant? c) What is the block’s period of oscillation? d) What is the spring constant of the spring? e) What...

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all.

    A block with mass M = 6.0 kg rests on a frictionless table and is attached by a horizontal spring (k = 130 N/m) to a all. A second block, of mass m = 1.25 kg, rests on top of M. The coefficient of static friction between the two blocks is 0.30. What is the maximum possible amplitude of oscillation such that m will not slip off M?

  • A 0.500 kg block rests (at x = 0) on a horizontal, frictionless surface as in...

    A 0.500 kg block rests (at x = 0) on a horizontal, frictionless surface as in the figure. The block is pressed back against a spring having a constant of k = 625 N/m, compressing the spring to xi = - 10.0 cm. Then the block is released, and it travels a distance d up an incline with ? = 300 from the horizontal. (10 points) a)What is the potential energy when the spring is fully compressed? b)What is the...

  • Five different experiments are carried out. In each experiment, a block is attached to a horizontal...

    Five different experiments are carried out. In each experiment, a block is attached to a horizontal spring. The block is pulled back a certain distance and released. The block oscillates back and forth on a frictionless surface. Rank the amplitude of oscillation for each of the following situations. (Rank the smallest amplitude as 1). 1 2 3 4 5  A block of mass M is attached to a spring with a spring constant k, pulled back a distance d, and released....

  • Five different experiments are carried out. In each experiment, a block is attached to a horizontal...

    Five different experiments are carried out. In each experiment, a block is attached to a horizontal spring. The block is pulled back a certain distance and released. The block oscillates back and forth on a frictionless surface. Rank the amplitude of oscillation for each of the following situations. (Rank the smallest amplitude as 1). A block of mass M is attached to a spring with a spring constant 2k, pulled back a distance d, and released. A block of mass...

  • (A)--Five different experiments are carried out. In each experiment, a block is attached to a horizontal...

    (A)--Five different experiments are carried out. In each experiment, a block is attached to a horizontal spring. The block is pulled back a certain distance and released. The block oscillates back and forth on a frictionless surface. Rank the maximum force on the block for each of the following situations. (Rank the smallest force as 1). 1 2 3 4 5  A block of mass M is attached to a spring with a spring constant 2k, pulled back a distance d,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT