Question

Mutah University Faculty of Eng mies I Prof. M. Abu-Zaid Exam. 2 Date: 20-12-2018 Problem () Steam enters a turbine with a mass flow rate o turbine develops a power of 1000 KW. At the inlet the pr MPa, the temperature is 400 °C, and the veloeity is exit, the pressure is 10 KPa, the quality is 0.9, and the velocity is (8 marks) pressure is 6 At the 10 m/s. m/s. Determine the rate of heat transfer to the surrounding, in Kw. Problem (2 Air at 80 KPa, 27 °C, and 220 m/s enters a diffuser at a mass rate of 2.5 kg/s and leaves at 42 °C. The exit area of the diffuser is 400 cm . The heat transfer rate to the surrounding is 18 KJ/s. Dete (8 marks) flow (a) The exit velocity (b) The exit pressure of the air. (9 marks) Problem (3) In an insulated heat exchanger, steam at 20 KPa, quality 0.95 with mass flow rate 20000 kg/hr, the steam leave as saturated liquid at KPa.. It is to be cooled by water, the inlet temperature of the c water is 10 °C, and the exit temperature is 20 °C. Determine the nm flow rate of the cooling water (kg/s.). GOOD LUCK

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Mutah University Faculty of Eng mies I Prof. M. Abu-Zaid Exam. 2 Date: 20-12-2018 Problem ()...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • I need question 4 thermodynamics ll 1-v diagram. Problem (4) team enters a turbine operating on...

    I need question 4 thermodynamics ll 1-v diagram. Problem (4) team enters a turbine operating on SSSF process with mass flow turbine develops a power out put of 100 K temperature is 400 °C, and the velocity is 10 m/s. At the e quality is 0.9, and the velocity is 50 m/s. Determine the rate of heat transfer from the turbine (KW). (10 marks) rate of 4600 kg/hr. The W. At the inlet, the pressure is 6 MPa, the ure...

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by...

    Homework 2 Problem 1: A piston-cylinder device initially contains 0.35-kg steam at 3.5 MPa, superheated by 7.4 C. Now the stream loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 200C. Determine (a) the final pressure and the quality (if mixture), (b) the boundary work, (c) the amount of heat transfer when the piston first hits...

  • Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in...

    Problem-2 (200) Air at 30 kPa, 200 K, and 250 m/s enters a turbojet engine in flight. The air mass flow rate is 28 kg/s. The compressor pressure ratio is 13, the turbine inlet temperature is 1460 K, and air exits the nozzle at 30 kPa. The diffuser and nozzle processes are isentropic, the compressor and turbine have isentropic efficiencies of 81% and 88%, respectively, and there is no pressure drop for flow through the combustor. Kinetic energy is negligible...

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s

    Steam with the mass flow rate of 0.75 kg/s enters an adiabatic turbine steadily at 19 MPa, 600°C and 150 m/s, and leaves at 150 kPa and 350 m/s. The isentropic efficiency of the turbine is 85%. Neglect potential energy. (I) Determine the exit temperature of the steam, and its quality (if saturated mixture)  (ii) Calculate the actual power output of the turbine, in kW (iii)  Illustrate a T-s diagram with respect to saturation lines for the isentropic process by clearly indicating all pressure, temperature,...

  • Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily...

    Air at 10 degree C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m^2.The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine the mass flow rate of the air and the temperature of the air leaving the diffuser. Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K....

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 kPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

  • Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits...

    Air enters a diffuser at 102 KPa , 57 Celcius , and 285 m/s and exits at 303 KPa , 10 Celcius , and 12 m/s. The area of the inlet of the diffuser is 97 cm2. Find the mass flow rate of air (kg/s), find the area of the exit of the diffuser (cm2), find the average heat transfer time rate (kW)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT