Question

Question 2 One mole of an ideal gas, initially at 30 C and 1 bar is changed to 130 °C and 10 bar by using two different mechanically reversible processes: 2.1 The gas is first heated at constant pressure until its temperature is 130 °C and then compressed isothermally to 10 bar. 2.2 The gas is first compressed isothermally to 10 bar and then heated at constant pressure to 13°C Calculate Q, W, AU, and AH for each case. Take Co (7/2) R [J /kg K] and Cv (5/2) R [J /kg K]. (16) 25 marks]

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Question 2 One mole of an ideal gas, initially at 30 C and 1 bar is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3.32. One mole of an ideal gas, initially at 30°C and 1 bar, is changed to 130°C and 10 bar by three different mechanic...

    3.32. One mole of an ideal gas, initially at 30°C and 1 bar, is changed to 130°C and 10 bar by three different mechanically reversible processes: The gas is first heated at constant volume until its temperature is 130°C; then it is compressed isothermally until its pressure is 10 bar The gas is first heated at constant pressure until its temperature is 130°C; then it is compressed isothermally to 10 bar The gas is first compressed isothermally to 10 bar;...

  • W 2. One mole of an ideal gas initially at 37°C and 2 bar pressure is...

    W 2. One mole of an ideal gas initially at 37°C and 2 bar pressure is heated and allowed to expand reversibly at constant pressure until the final temperature is 287°C. For this gas, Cum = 2.5R, constant over the temperature range. a. Derive related thermodynamic equations (q, w, U, and H) for an ideal gas, when the temperature is changed (5 points). b. Calculate w (work done on the ideal gas), 9 (the amount of heat absorbed by the...

  • One mole of an ideal monoatomic gas is initially at 300 K and 5 bar of...

    One mole of an ideal monoatomic gas is initially at 300 K and 5 bar of pressure inside a cylinder with a frictionless piston. a) The cylinder is kept in a heat bath and the gas is allowed to expand under 1 bar of external pressure. Calculate the work and heat associated with this process. b) Calculate the change in enthalpy for isothermal expansion at constant pressure. c) Alternatively, the gas is allowed to expand isothermally under near-equilibrium conditions. Calculate...

  • I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3...

    I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3 is compressed adiabatically in a piston-cylinder device from T1-300 K, pi = 1 bar to p2 = 10 bar at a constant external pressure Pext"- P2 -10 bar. Calculate the final temperature, T2, and W, Q. AU, AH for this process. 2. (20 pts.) Repeat problem 1 for an adiabatic and reversible compression. 3. (20 pts.) A rigid, insulated tank is divided into two...

  • An ideal gas initially at 600K and 10 bar undergoes a four-step mechanically reversible cycle in...

    An ideal gas initially at 600K and 10 bar undergoes a four-step mechanically reversible cycle in a closed system. In step 12 (the process that changes the system from State 1 to State 2), pressure decreases isothermally to 3bar; in step 23, pressure decreases at constant volume to 2bar; in step 34 volume decreases at constant pressure; and in step 41, the gas returns adiabatically to its initial state. Take Cp=(7/2)R and Cv=(5/2)R. Determine the efficiency of the cycle. (Hint:...

  • 4. One mole of monoatomic ideal gas, initially at 27 oC and 1 bar, is heated...

    4. One mole of monoatomic ideal gas, initially at 27 oC and 1 bar, is heated and allowed to expand reversibly against constant pressure of 1 bar until the final temperature is 127 °C. 4.1 What are the initial (Vi) and final (V2) volumes of the gas? 4.2 Calculate the work (w) that the gas does during this expansion. 4.3 Calculate the internal energy change (AU) of this expansion process 4.4 Calculate the enthalpy change (AH) of this expansion process.

  • Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and...

    Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and 25oC to 7 bar. The process is irreversible and requires 25% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas? Assume Cv=(5/2)R in this calculation.

  • 3.- [Four marks] One mol of ideal gas initially at a pressure of 2.0 bar and...

    3.- [Four marks] One mol of ideal gas initially at a pressure of 2.0 bar and temperature of 273 K is taken to a final pressure of 4.0 bar using a reversible path defined by P V = constant. Find AU, w and q. Take Üy to be equal to 12.5 J mol-1K-1 and R 0.083145 bar dm mol-'K-1 8.3145 J mol-' K-1 -

  • **PLEASE ANSWER ALL SUB-QUESTIONS AND EXPLAIN STEP BY STEP. THANK YOU!** QUESTION 6 One mole of an ideal gas is compres...

    **PLEASE ANSWER ALL SUB-QUESTIONS AND EXPLAIN STEP BY STEP. THANK YOU!** QUESTION 6 One mole of an ideal gas is compressed isothermally but irreversibly at 130 oC from 2.5 bar to 6.5 bar in a piston/cylinder device. The work required is 30 % greater than the work of reversible, isothermal compression. The heat transferred from the gas during compression flows to a heat reservoir at 25 °C. Calculate the entropy changes of the gas, the heat reservoir, and AStotal QUESTION...

  • 2. One mole of an ideal gas, CP - (7/2)R and CV - (5/2)R, is compressed...

    2. One mole of an ideal gas, CP - (7/2)R and CV - (5/2)R, is compressed adiabatically in a piston/cylinder device from 2 bar and 25°C to 7 bar. The process is irreversible and requires 35% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT