Question

Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and...

Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and 25oC to 7 bar. The process is irreversible and requires 25% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas? Assume Cv=(5/2)R in this calculation.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. One mole of an ideal gas, CP - (7/2)R and CV - (5/2)R, is compressed...

    2. One mole of an ideal gas, CP - (7/2)R and CV - (5/2)R, is compressed adiabatically in a piston/cylinder device from 2 bar and 25°C to 7 bar. The process is irreversible and requires 35% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas?

  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 9 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

  • **PLEASE ANSWER ALL SUB-QUESTIONS AND EXPLAIN STEP BY STEP. THANK YOU!** QUESTION 6 One mole of an ideal gas is compres...

    **PLEASE ANSWER ALL SUB-QUESTIONS AND EXPLAIN STEP BY STEP. THANK YOU!** QUESTION 6 One mole of an ideal gas is compressed isothermally but irreversibly at 130 oC from 2.5 bar to 6.5 bar in a piston/cylinder device. The work required is 30 % greater than the work of reversible, isothermal compression. The heat transferred from the gas during compression flows to a heat reservoir at 25 °C. Calculate the entropy changes of the gas, the heat reservoir, and AStotal QUESTION...

  • A reversible compression of 1 mol of an ideal gas in a piston/cylinder device result in...

    A reversible compression of 1 mol of an ideal gas in a piston/cylinder device result in a pressure increase from 1 bar to P_2 and a temperature increase from 400 K to 950 K. The path followed by the gas during compression is given by PV^1.55 = const, and the molar heat capacity of the gas is given by C_p/R = 3.85+0.57 time sign 10^-3T [T/K] Determine the heat transferred during the process and the final pressure.

  • I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3...

    I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3 is compressed adiabatically in a piston-cylinder device from T1-300 K, pi = 1 bar to p2 = 10 bar at a constant external pressure Pext"- P2 -10 bar. Calculate the final temperature, T2, and W, Q. AU, AH for this process. 2. (20 pts.) Repeat problem 1 for an adiabatic and reversible compression. 3. (20 pts.) A rigid, insulated tank is divided into two...

  • Air is being compressed in a piston-cylinder device in a reversible and adiabatic manner. During the...

    Air is being compressed in a piston-cylinder device in a reversible and adiabatic manner. During the process both the temperature and pressure of the gas increase, while the volume is decreasing. If the initial volume and temperature of the air are 3 m3 and 13 °C, respectively, and the final volume is measured to be 0.3 m3, the final temperature of the air is

  • Q3. One mole of N2 in a piston-cylinder assembly undergoes an adiabatic compression from an initial state of pressur...

    Q3. One mole of N2 in a piston-cylinder assembly undergoes an adiabatic compression from an initial state of pressure 0.5 bar and molar volume 0.05 m/mol to a final state of pressure 10 bar and molar volume 0.003 m/mol. Use the vdw eos to determine the work done on the gas. Q3. One mole of N2 in a piston-cylinder assembly undergoes an adiabatic compression from an initial state of pressure 0.5 bar and molar volume 0.05 m/mol to a final...

  • 5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar...

    5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar and 330 K (State 1) to 14 bar and 700 K (State 2). Air can be considered an ideal gas at these conditions and molecular weight of air is 28.97 kg/kmol. Find the entropy of air in State 1 and State 2. Using the entropy balance equation for a closed system calculate the entropy generation (kJ/K) during the compression process. (b) If entropy decreases...

  • 7.) One mole of an ideal gas is contained in an insulated piston-cylinder arrangement in an...

    7.) One mole of an ideal gas is contained in an insulated piston-cylinder arrangement in an initial state T, P,V. The gas is allowed to expand adiabatically and irreversibly against a constant external pressure P. until a point is reached where the internal pressure becomes equal to Po. If C for the gas is constant and equal to 1.5 R, derive an expression giving the final temperature of the gas in terms of P., V, T, and R.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT