Question

Air is being compressed in a piston-cylinder device in a reversible and adiabatic manner. During the...

Air is being compressed in a piston-cylinder device in a reversible and adiabatic manner. During the process both the temperature and pressure of the gas increase, while the volume is decreasing. If the initial volume and temperature of the air are 3 m3 and 13 °C, respectively, and the final volume is measured to be 0.3 m3, the final temperature of the air is

0 0
Add a comment Improve this question Transcribed image text
Answer #1

T,= 13°C = 286k Q Given: 4,=3m3, v₂ = 0.3 m3 To find : T = 9 sohn: PVT = constant for process 1-2, PVM = constant Y a, met, v

Add a comment
Know the answer?
Add Answer to:
Air is being compressed in a piston-cylinder device in a reversible and adiabatic manner. During the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is...

    Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is at 400 kPa and 300 K with a volume of 0.3 m3. Air is first expanded isothermally to 150 kPa, then compressed adiabatically to the initial pressure, and finally compressed at the constant pressure to the initial state. Accounting for the variation of specific heats with temperature, determine the work and heat transfer for each process.

  • Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...

    Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125 ̊C. (a) If the volume of air in the device increases to 0.15 m3 while the pressure remains constant, determine the work done by the system during the process. (b) If as a result of heat transfer to the surrounding, the pressure and temperature in the device drop to 240 kPa and 55 ̊C, respectively, and the piston is held such that the volume...

  • Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and...

    Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and 25oC to 7 bar. The process is irreversible and requires 25% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas? Assume Cv=(5/2)R in this calculation.

  • A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...

    A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]

  • 1. Air in a cylinder with a volume of 500 cm3 is compressed by a piston...

    1. Air in a cylinder with a volume of 500 cm3 is compressed by a piston to a volume of 150 cm3. If the initial air pressure is 5 x 104 Pa (N/m2), what is the pressure in the cylinder after compression? (Assume that this is a slow process, and that T remains constant.) 8.  The sample of gas in Question 2 is contained in a rigid closed container. If the pressure of the gas is 1013 mb at 20°C, what...

  • A frictionless piston-cylinder device contains air at 300 K and 1 bar and is heated until...

    A frictionless piston-cylinder device contains air at 300 K and 1 bar and is heated until its volume doubles and the temperature reaches 600 K. Answer the following: A. You are interested in studying the air in the piston-cylinder device as a closed system. Draw a schematic of your device and the boundary that defines your system. Assume the cylinder is in horizontal position. B. Determine the final pressure of the air at the end of the process, in bar....

  • 4) The work produced by a piston-cylinder device depends on the pressure inside the cylinder and ...

    visual studio 2017 c++ 4) The work produced by a piston-cylinder device depends on the pressure inside the cylinder and the amount the piston moves, resulting in a change in volume inside the cylinder. Mathematically In order to integrate this equation, we need to understand how the pressure changes with the volume. We can model most combustion gases as air and assume that they follow the ideal gas law PV- nRT where P- pressure, kPa, volume, m n- number of...

  • A reversible compression of 1 mol of an ideal gas in a piston/cylinder device result in...

    A reversible compression of 1 mol of an ideal gas in a piston/cylinder device result in a pressure increase from 1 bar to P_2 and a temperature increase from 400 K to 950 K. The path followed by the gas during compression is given by PV^1.55 = const, and the molar heat capacity of the gas is given by C_p/R = 3.85+0.57 time sign 10^-3T [T/K] Determine the heat transferred during the process and the final pressure.

  • Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 KPa,...

    Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 KPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R= 287 J/Kg.K 1. Determine the work done during the process. 2. Determine if the work is done on the system or done by the system. 3. Plot the PV diagram showing all the states and numbers on it.

  • Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa,...

    Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R= 287 J/Kg.K 1. Determine the work done during the process. 2. Determine if the work is done on the system or done by the system. 3. Plot the PV diagram showing all the states and numbers on it.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT