Question

Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 9 bar, 600 K. The air can

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(Part 1) Initial Ti= 3ook Final Compression P = 1 bar T2 =6ook P2 = 9 bar = 0.287 kJ/kg k for air, Cp= 1.005 kJ/kg k adiabati

Add a comment
Know the answer?
Add Answer to:
Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

  • Problem #4: Air is compressed in a piston cylinder from 1 bar, 17 °C such that...

    Problem #4: Air is compressed in a piston cylinder from 1 bar, 17 °C such that the "2-30% v1 Assume polytropic compression with n - 1.3, negligible kinetic and potential energy changes, and ideal gas behavior. Determine the following. (a) the temperature of the exiting air, in °C; (b) the work and heat transfer, in kJ/kg (c) the entropy generated, in kJ/kgK, if heat transfer takes place at 520 K; (d) Also sketch the process on p-v and T-s diagrams...

  • Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and...

    Two mole of ideal gas, is compressed adiabatically in a piston/cylinder device from 2 bar and 25oC to 7 bar. The process is irreversible and requires 25% more work than a reversible, adiabatic compression from the same initial state to the same final pressure. What is the entropy change of the gas? Assume Cv=(5/2)R in this calculation.

  • 5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar...

    5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar and 330 K (State 1) to 14 bar and 700 K (State 2). Air can be considered an ideal gas at these conditions and molecular weight of air is 28.97 kg/kmol. Find the entropy of air in State 1 and State 2. Using the entropy balance equation for a closed system calculate the entropy generation (kJ/K) during the compression process. (b) If entropy decreases...

  • Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to...

    Air in an insulated piston-cylinder assembly undergoes a compression process from 100 kPa, 300 K to a second state at 600 K and 1 MPa. How much entropy is produced, in kJ/kgK? You can assume that the air is modeled as an ideal gas. Rair 0.287 kJ/kgK

  • Problem 4.040 SI Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is...

    Problem 4.040 SI Refrigerant 134a enters an air conditioner compressor at 4 bar, 20°C, and is compressed at steady state to 12 bar, 80°C. The volumetric flow rate of the refrigerant entering is 8.5 m3/min. The work input to the compressor is 127.5 kJ per kg of refrigerant flowing Neglecting kinetic and potential energy effects, determine the magnitude of the heat transfer rate from the compressor, in kw kW the tolerance is +/-596 Click if you would like to Show...

  • Air, modeled as an ideal gas, is compressed at steady state from 1 bar, 300 K,...

    Air, modeled as an ideal gas, is compressed at steady state from 1 bar, 300 K, to 5 bar, 500 K, with 190 kW of power input. Heat transfer occurs at a rate of 25.33 kW from the air to cooling water circulating in a water jacket enclosing the compressor. Neglecting kinetic and potential energy effects, determine the mass flow rate of the air, in kg/s.

  • 6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar....

    6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. The diagram below shows a tank in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with c 0.733 k.J/kg K and kinetic and potential energy...

  • 3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and...

    3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and a volume of 2 m^3. The air undergoes a process to a state where pressure is 1 bar, during which the pressure-volume relationship is PV=constant. Assuming ideal gas behavior for air, determine the mass of the air, in kg and the work and heat transfer, each in KJ.

  • Problem 3.050 SI Five kg of water is contained in a piston-cylinder assembly, initially at 5...

    Problem 3.050 SI Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 500°C. The water is slowly heated at constant pressure to a final state. The heat transfer for the process is 2960 kJ and kinetic and potential energy effects are negligible. Determine the final volume, in m3, and the work for the process, in k. Step X Your answer is incorrect. Try again. Determine the final volume, in m3 v, = 1320.328 m3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT