Question

6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. The diagram below shows a tank in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with c 0.733 k.J/kg K and kinetic and potential energy effects are negligible. Determine the amount of entropy transferred into the air and the amount of entropy produced, each in kJ/K. This portion of the boundary is at temperature T, 600 K 0 Reservoir A at T W600 kJ Air initially at 300 K, 1 bar Finally. T2 600 K
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ene lance caucelior ra ana be coma ener sub 四 4Y kE and obv PE tu maJ」 qv.tuRafic hecf at Jud J Ti end - book) RYOene lance caucelior ra ana be coma ener sub 四 4Y kE and obv PE tu maJ」 qv.tuRafic hecf at Jud J Ti end - book) RYOть

Add a comment
Know the answer?
Add Answer to:
6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1...

    6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. As illustrated in Fig. P6.50, the tank is in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with cy = 0.733 kJ/kg . K...

  • A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at...

    A closed, rigid tank fitted with a paddle wheel contains 1.6 kg of air, initially at 200oC, 1 bar. During an interval of 10 minutes, the paddle wheel transfers energy to the air at a rate of 1 kW. During this time interval, the air also receives energy by heat transfer at a rate of 0.5 kW. These are the only energy transfers. Assume the ideal gas model for the air, and no overall changes in kinetic or potential energy....

  • Problem 6.028 SI Air contained in a rigid, insulated tank fitted with a paddle wheel, initially...

    Problem 6.028 SI Air contained in a rigid, insulated tank fitted with a paddle wheel, initially at 300 K, 2 bar, and a volume of 2 m, is stirred until its temperature is 600 K. Assuming the ideal gas model for the air, and ignoring kinetic and potential energy, determine (a) the final pressure, in bar (b) the work, in kJ (c) the amount of entropy produced, kJ/K Solve using: (1) data from Table A-22. (2) constant cy read from...

  • A rigid copper tank, initially containing 1 m^3 of air at 295K, 5 bar, is connected...

    A rigid copper tank, initially containing 1 m^3 of air at 295K, 5 bar, is connected by a valve to a large supply line carrying air at 295K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the air in...

  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

  • 5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now...

    5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now O2 is gradually cooled under constant volume until its temperature reaches 455 K. (18 Points) (a) Calculate the pressure of O2 at final state. (4 points) (b) Determine the boundary work. (6 points) (b) Calculate the heat transfer during this process. (8 Points) let me know if u want the property table MAE 320 - Thermodynamics + > e ecampus.wvu.edu/bbcswebdav/pid-6846897-dt-content-rid-82617141 1/courses/star50314.202005/MAE320-2020-Summer-HW04.pdf Q4 to Q6...

  • Problem 3. (10 points) A closed and insulated rigid tank (perfectly insulated) is initially divided into...

    Problem 3. (10 points) A closed and insulated rigid tank (perfectly insulated) is initially divided into halves by a separator. On one side of the separator is 1 m of air at 300 K, 2 bar. On the other side is 1 m of air at 500 K, 1 bar. The separator is removed, and the air from the two sides mixes and reaches equilibrium state Please treat the air as ideal gas with cp-1.001 kJ/kg K and c0.714 kJ/kg...

  • Consider 0.7 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another r...

    Consider 0.7 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K. Determine: (a) the volume of each tank, in m3. (b) the final pressure, in bar. (c) the magnitude of the heat transfer to or from the gases during the process,...

  • Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another r...

    Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K. Determine: (a) the volume of each tank, in m3. (Correct .7124 m^3 and .17 m^3) (b) the final pressure, in bar. (Correct 0.9331 bar) (c) the magnitude of the heat...

  • Thermodynamics 1. (correct answer: 0.080595 ) Initially, an insulated rigid tank contains 20 kg of water...

    Thermodynamics 1. (correct answer: 0.080595 ) Initially, an insulated rigid tank contains 20 kg of water at 29.5oC and 101 kPa. The tank also contains a 4.86 kg aluminum block at 93.2oC. Using constant specific heats evaluated at 300 K, determine the total entropy production (kJ/K) after an hour assuming thermal equilibrium is achieved. 2. Correct Answer: 8.0087 ± 0.1% Steam at 1 MPa, 593.2oC, expands in a turbine to 0.01 MPa. If the process is isentropic, find the specific...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT