Question

Consider 0.7 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another r...

Consider 0.7 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K.

Determine:
(a) the volume of each tank, in m3.
(b) the final pressure, in bar.
(c) the magnitude of the heat transfer to or from the gases during the process, in kJ.
(d) the entropy change of each gas and of the overall system, in kJ/K.

(a)Determine the volume of each tank, in m3.

 V1, N2= m3
 V1, CO2= m3
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Co2. h런.lar |gsībay K.o L02 2: 一 101,325 χ 28-ㄧㄧㄧㄧㄧㄧ 一 101.325 3 0,1678 m tvA at canned with cannerol İsp (s.cen ent 아 nawatA_ v).co2. Rea. 2.g.188 zou 2.K 0(AS 倔. @s., nea. IC-)a. do. t +ん2.41 30D 0 618 Scanned with CamScannerOV. Ag Scanned with Camscanner

Add a comment
Know the answer?
Add Answer to:
Consider 0.7 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another r...

    Consider 0.8 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K. Determine: (a) the volume of each tank, in m3. (Correct .7124 m^3 and .17 m^3) (b) the final pressure, in bar. (Correct 0.9331 bar) (c) the magnitude of the heat...

  • A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected...

    A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected to another rigid tank that contains 4.4 kg of O2 at 25°C and 150 kPa. The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is 25°C, determine the volume of each tank and the final mixture pressure. The gas constants of N2 and O2 are 0.2968 and 0.2598 kPa.m3/kg.K, respectively. The universal...

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • 3. Similar to 13-42 A rigid tank that contains 1.57 kg of N2 at 25°C and...

    3. Similar to 13-42 A rigid tank that contains 1.57 kg of N2 at 25°C and 550 kPa is connected to another rigid tank that contains 3.71 kg of O2 at 25°C and 170 kPa. The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is 25°C, determine the volume of each tank and the final mixture pressure

  • A rigid tank whose volume is 3 m3, initially containing air at 1 bar, 295 K,...

    A rigid tank whose volume is 3 m3, initially containing air at 1 bar, 295 K, is connected by a valve to a large vessel holding air at 6 bar, 295 K. The valve is opened only as long as required to fill the tank with air to a pressure of 6 bar and a temperature of 320 K. Assuming the ideal gas model for the air determine the heat transfer between the tank contents and the surroundings, in kl....

  • 6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar....

    6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. The diagram below shows a tank in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with c 0.733 k.J/kg K and kinetic and potential energy...

  • An insulated, rigid tank whose volume is 0.5 m^3 is connected by a valve to a...

    An insulated, rigid tank whose volume is 0.5 m^3 is connected by a valve to a large vessel holding steam at 40 bar, 500 C. the tank is initially evacuated, the value is opened only as long as required to fill the tank with steam to a pressure of 20 bar. determine the final temperature of the steam in the tank, in C, and the final mass of the steeam in the tank, in Kg.

  • 1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air...

    1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air at a pressure of 100 kPa and 300 K. At time t = 0, the valve for the air tank is opened in a controlled manner and air leaks out isothermally (constant temperature) of the tank at a constant mass flow rate of 1 kg/s. The valve is closed after 75 seconds. Answer the following questions: Assuming air is an ideal gas, what is...

  • Problem 3-2 A rigid, well-insulated tank consists of two compartments eparated by a valve, one being...

    Problem 3-2 A rigid, well-insulated tank consists of two compartments eparated by a valve, one being twice the volume of the other. Initially, the smaller compartment contains 10 kg of nitrogen at 6 bar and 100°C, while the larger one is evacuated. The valve is opened and the gas expands to fill the total volume, eventually achieving an equilibrium state. Calculate: a) The final temperature, in K. b) The final pressure, in bar, c) The total exergy destroyed, in kJ...

  • A rigid copper tank, initially containing 1 m^3 of air at 295K, 5 bar, is connected...

    A rigid copper tank, initially containing 1 m^3 of air at 295K, 5 bar, is connected by a valve to a large supply line carrying air at 295K, 15 bar. The valve is opened only as long as required to fill the tank with air to a pressure of 15 bar. Finally, the air in the tank is at 310 K. The copper tank, which has a mass of 20 kg, is at the same temperature as the air in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT