Question

Two parallel charged plates separated by 8 mm have a voltage difference of 385 V. 1) Find the electric field between the plates. 2) An alpha particle (charge +2 e-) is released from the positive plate. How much kinetic energy has it gained by the time it reaches the negative plate? A) 24 kV/m, 770 eV B) 48 kV/m, 770 eV C) 24 kV/m, 385 eV D) 48 kV/m, 385 eV
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two parallel charged plates separated by 8 mm have a voltage difference of 385 V. 1)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two facing surfaces of two large parallel conducting plates separated by 8.5 cm have uniform surface...

    Two facing surfaces of two large parallel conducting plates separated by 8.5 cm have uniform surface charge densities such that are equal in magnitude but opposite in sign. The difference in potential between the plates is 440 V (a) Is the positive or the negative plate at the higher potential? the positive plate the negative plate (b) What is the magnitude of the electric field between the plates? 5.17 kV/mm (c) An electron is released from rest next to the...

  • Two facing surfaces of two large parallel conducting plates separated by 12.0 cm have uniform surface...

    Two facing surfaces of two large parallel conducting plates separated by 12.0 cm have uniform surface charge densities such that are equal in magnitude but opposite in sign. The difference in potential between the plates is 490 V. (a) Is the positive or the negative plate at the higher potential? O the pusitive plale O the negative plate (b) What is the magnitude of the electric field between the plates? kV/m (c) An electron is released from rest next to...

  • A)A pair of oppositely charged parallel plates is separated by 5.52 mm. A potential difference of...

    A)A pair of oppositely charged parallel plates is separated by 5.52 mm. A potential difference of 610 V exists between the plates. What is the strength of the electric field between the plates? The fundamental charge is 1.602 × 10−19 . Answer in units of V/m. B)What is the magnitude of the force on an electron between the plates? Answer in units of N. C)How much work must be done on the electron to move it to the negative plate...

  • Oppositely charged parallel plates are separated by 3.53 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 3.53 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? (b) What is the magnitude of the force on an electron between the plates? (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.72 mm from the positive plate?

  • Oppositely charged parallel plates are separated by 6.50 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 6.50 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.98 mm from the positive plate?

  • Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.31 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.95 mm from the positive plate? J

  • Oppositely charged parallel plates are separated by 3.95 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 3.95 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? ______ N/C (b) What is the magnitude of the force on an electron between the plates? _______N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 3.08 mm from the positive plate? _________ J

  • Oppositely charged parallel plates are separated by 5.12 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.12 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? ................... N/C (b) What is the magnitude of the force on an electron between the plates? .................. N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.88 mm from the positive plate? .................. J

  • Oppositely charged parallel plates are separated by 5.78 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.78 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? __ N/C (b) What is the magnitude of the force on an electron between the plates? __ N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.94 mm from the positive plate? __ J

  • Oppositely charged parallel plates are separated by 5.72 mm. A potential difference of 600 V exists...

    Oppositely charged parallel plates are separated by 5.72 mm. A potential difference of 600 V exists between the plates. (a) What is the magnitude of the electric field between the plates? N/C (b) What is the magnitude of the force on an electron between the plates? N (c) How much work must be done on the electron to move it to the negative plate if it is initially positioned 2.95 mm from the positive plate? J

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT