Question

Figure 12.1 is a schematic of a heat pump operating at steady state with R-134a as the working fluid. The mass flow rate of the refrigerant is 7 kg/min, and the power input to the compressor is 5.17 kW. Determine a) The coefficient of performance, y b) If the valve were replaced by a turbine, what would be the maximum power generated by the turbine c) Based on your answer to b) would you recommend the replacement of a throttle valve with a turbine? out Saturated liquid p,-p,-9 bar T2 60°C Condenser Wc 5.17 kW Expansion Compressor valve Evaporator 4 m-7 kg/min PI P4 2.4 bar 0in

0 0
Add a comment Improve this question Transcribed image text
Answer #1

-1344 6o 二 20.2.06(. kW en, d 一了 0-0 た一. 그 子109 2汀@ny Ai un e dare Aeen im part。リいoud ou)patoyu Low andins

Add a comment
Know the answer?
Add Answer to:
Figure 12.1 is a schematic of a heat pump operating at steady state with R-134a as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C...

    Problem #3 Refrigerant R-134a enters the condenser of a heat pump at 1000 kPa and 80°C at a rate of 0.025 kg/s and leaves at 1000 kPa as saturated liquid. If the compressor consumes 2 kW of power, determine: a) The COP of the heat pump (as heating device). b) The rate of heat absorption from the outside air. тан Condenser Throttling valve Compressor Evaporator To

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • Find a) compressor power, b) heat transfer Refrigeration/Heat Pump Cycle rate to the condenser and c)...

    Find a) compressor power, b) heat transfer Refrigeration/Heat Pump Cycle rate to the condenser and c) heat transfer arte to the evaporator P2 800 kPa 2 3 P 800 kPa T2= 80°C Condenser Saturated Assumptions: SSSF, throttle valve and vapour compressor, c) negligible change in kinetic energy and negligible change in potential a COND Expansion/ Throttle W COMP R-134a m 1.5 kg/s Compressor energy valve Evaporator T1=-26.3 °C 1 4-26.3 C Saturated vapour EVAP

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34°C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat transfer...

  • Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of...

    Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of 60,000 Btu/hr. The condenser operates at 200 psi, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a saturated liquid at the condenser exit. The temperature at the compressor exit is 180°F. Assuming the compressor is not 100% isentropic, determine: a) Mass flow rate (lbm/min) b) Compressor power (hp) c) Isentropic compressor efficiency d) Coefficient of...

  • A Refrigeration System Using R-134A In a refrigeration system, the refrigerant R-134A begins as s...

    A Refrigeration System Using R-134A In a refrigeration system, the refrigerant R-134A begins as saturated vapor at -15°(State 1). It then goes through a reversible adiabatic compressor to reach State 2. After flowing through the condenser (a heat exchanger), the refrigerant exits as saturated liquid at 70°C (State 3). It is then throttled by going through an expansion valve, to reach State 4. It finishes the cycle by going through another heat exchanger (the evaporator), to return to State 1....

  • Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A...

    Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A enters the compressor (75% isentropic efficiency) as a saturated vapor at 200 kPa and leaves at 800 kPa. The refrigerant goes through a constant pressure condenser and leaves as a saturated liquid. The refrigerant then goes through an adiabatic expansion valve enters the evaporator as a liquid-vapor mixture. The mass flow rate of refrigerant is 0.1 kg/s. and Cod A. Write the equation for...

  • An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1.25 bar, and saturated liquid exits the condenser at 5 bar. The mass flow rate of refrigerant is 8.5 kg/min. A. Determine the magnitude of the compressor power input required, in kW (report as a positive number). B. Determine the refrigerating capacity, in tons. C. Determine the coefficient of performance. Please answer all parts of the question. Thanks!

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT