Question

Problem #5 - (20%) A circuit has the transfer function: H(S) = S. (s + 5623 (s + 31.62) · (s + 17778) (a) Use asymptotic analProblem #5 – Continued (a) Sketch a Bode plot of the magnitude of the transfer function on the previous page. Show your stepsPlease answer all parts

0 0
Add a comment Improve this question Transcribed image text
Answer #1

45) Tol) Given HB) = 10.5 (5+5673) (5431162) (5+17778) 1051 ost1) x5613 10 x 31.62412778 (het) ( +1) X 3163719425 21.62 179481H (jw) I wrol - 2010g 6.1xw) The lym (d) - 90logo.Ix0.1). 40dB) - -- zolde) 36 o doldec) 10dB) o Ta Bldee) o la 20681dee) 20b) HGW)2 gortan, Hlu)2 0.190 (1.7784164 Jw+1) (30.0316 9+1 ) (1516Xboʻ10+1) <Hc8w)2 nottany 1.7784109 2010) - tam 10.031640)

Add a comment
Know the answer?
Add Answer to:
Please answer all parts Problem #5 - (20%) A circuit has the transfer function: H(S) =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • consider a negative unity feedback system whose feedforward transfer function is: (s) - 1/((s+0.11(s+1)(s+10) Brawa Bode...

    consider a negative unity feedback system whose feedforward transfer function is: (s) - 1/((s+0.11(s+1)(s+10) Brawa Bode plot of the open loop transfer function that includes an asymptotic and approximate estimate for both magnitude and phase. Answer he following questions Asymptotic phase lag at 1 rad/sec is _ degrees 0 -45 -90 0-135 -180 225 270 325 -360 Asymptotic phase lag at 10 rad/sec is _ degrees 0 -45 -90 0 -135 -180 -225 -270 360 none of these Asymptotic phase...

  • singal and system QUESTION 5 [20 marks] Given transfer function of a networks H(s) transfer function...

    singal and system QUESTION 5 [20 marks] Given transfer function of a networks H(s) transfer function at w = 1000 rad/s. $10+ 52 +10005+7x106 - Evaluate the [10 marks) b) Simplify and obtain the frequency response (magnitude and phase plots) of the 100(5+10) following transfer function H(s) s+10000 [6 marks] Sketch the magnitude and phase plots from (b) using Bode Plot Technique. [4 marks]

  • For the system transfer function given by: s +10 $2 x (82100.+10) 1. Identify each term in the tr...

    For the system transfer function given by: s +10 $2 x (82100.+10) 1. Identify each term in the transfer function (constant, poles, zeros) (a) For any constant terms, what is the dB magnitude? What is the phase angle? (b) For any real poles not at the origin, what is the break frequency? (c) For any real zeros not at the origin, what is the break frequency? 2. Give the value of the DB magnitude and phase angle at w =...

  • Problem 2 An RC circuit ( with an active component) has the following transfer function (where...

    Problem 2 An RC circuit ( with an active component) has the following transfer function (where R and Care positive) H(s) - Vout(8) _R|| R/10k12 Vin(8) 10KN 1 + $RC Where s = jw Find the value of the resistor and the value of the capacitor so that: for w = 0 rad/s, H(jw)lde = +12dB at f = 1kHz, |H(jw)lab = +9dB Problem 3 The transfer function of a circuit is given by H(S) = Vout(s) Vin(s) Where s...

  • consider a negative unity feedback system whose feedforward transfer function is: (s) + 1/[(s+0.11(s+1)(s+10)] Braw a...

    consider a negative unity feedback system whose feedforward transfer function is: (s) + 1/[(s+0.11(s+1)(s+10)] Braw a Bode plot of the open loop transfer function that includes an asymptotic and approximate estimate for both magnitude and phase. Answer he following questions D Question 1 5 pts Low frequency DC gain is_db 00 0 1 10 100 none of these Question 2 Low frequency DC phase lag is _ degrees 0 -90 -180 -270 -360 none of these Question 3 Asymptotic magnitude...

  • QUESTION #2 PLEASE 1. Derive the transfer function for the circuit shown below. Plot H(s) versus...

    QUESTION #2 PLEASE 1. Derive the transfer function for the circuit shown below. Plot H(s) versus frequency in Hertz, on a semilog scale. Ri 11.3 k Ri 22.6 k R R = 68.1 kN R3 C C 0.01 uF R2 Vout(s) Vin(s) C2 10 (s+5) H(s) = (s+100)(s5000) , (a) draw the magnitude Bode plot 2. For the transfer function and find the approximate maximum value of (H(jw) in dB, (b) find the value of w where 1 for w>5...

  • A bode plot of the transfer function, GS = - 25 $2+45+25, is shown as below....

    A bode plot of the transfer function, GS = - 25 $2+45+25, is shown as below. Bode Diagram System sys Frequency (rad/s): 7 Magnitude (dB): -3.4 Magnitude (dB) Phase (deg) Systemt sys Frequency (rad/s): 7 Phase (deg): - 130 - 135 - 180 10 Frequency (rad/s) Determine the frequency response y(t) when a sinusoidal function, X(t) = 10 sin (7t +30) is applied to the transfer function as an input signal. (20 points)

  • For the given transfer function: Ho-2where s 5 (s s (s +10) where s =j w...

    For the given transfer function: Ho-2where s 5 (s s (s +10) where s =j w Sketch the approximate Bode plots (amplitude and phase). Label all the amplitude values in db, phase values in degrees, the slopes in db/dec, and the corner frequencies in rad/sec.. a. b. If the gain of the transfer function given above, H(s), increased by a factor of 10 (from 5 to 50), what will happen to the approximate Bode plots (amplitude and phase) that you...

  • Sketch the bode plot of a signal conditioner with the transfer function G(s) in the provided...

    Sketch the bode plot of a signal conditioner with the transfer function G(s) in the provided graph and calculate the bandwidth of this signal conditioner. GO 10s +1 S2 + 10s + 24 Table 2 Components in G(S) Asymptotes for Magnitude Asymptotes for Phase 20 log,0 1G(jw) Frequency-rad/sec Phase - degrees Frequency - rad/sec

  • Chapter 12, Problem 12.21 (Multistep) Part 1 Correct. Sketch the magnitude characteristic of the Bode plot...

    Chapter 12, Problem 12.21 (Multistep) Part 1 Correct. Sketch the magnitude characteristic of the Bode plot for the transfer function 30(0.060 * jo + 1) jojo + 1)(0.0024 * ja + 1) H0) = Shown here is the radian frequency axis for w > 0. The labeled frequencies represent the break frequencies in the transfer function H(o) (not necessarily drawn to scale). -+ W + w W3 W (rad/sec) What are the numerical values of the break frequencies w1, wz,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT