Question

In the case a in the figure 1 ...blocl A is accelerated across a frictionless table by a hanging a 10 N weight (1.02 kg). In case B Block A is accelerated across a frictionless table by a steady 10 N tension in the string. The string is massless and the pulley is massless and frictionless.

Question 1

Is A's acceleration in case b greater tjan, less than or equal to its acceleration in casa a?

Question 2

Explain the answer....

Case a


0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution :- Case A Case B uestionThe block have the Same aueleradis i both the Cap亼·It is go-because, ut actng om Inhis Case,

Add a comment
Know the answer?
Add Answer to:
In the case a in the figure 1 ...blocl A is accelerated across a frictionless table...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2) A massless string across a massless, frictionless pulley connects block of mass 5.35 kg, to...

    2) A massless string across a massless, frictionless pulley connects block of mass 5.35 kg, to block B, of mass 4.27 kg. Block A lies on a smooth ce and block B hangs straight down from the pulley. Block B falls and block A moves across the horizontal surface. Find a) the acceleration of the blocks and b) the tension in the string.

  • 3. A 5.00 kg block rests on a level frictionless surface and is attached by a...

    3. A 5.00 kg block rests on a level frictionless surface and is attached by a light string to an 7.00 kg hanging mass where the string passes over a massless, frictionless pulley. Ifg=9.80 m/s, what is the tension in the connecting string? 4. A light string connects a 16 kg mass and a 4.0 kg mass over a massless, frictionless pulley. (a) If g= 9.8 m/s, what is the acceleration of the system when released? (b) What is the...

  • A 4.0 kg box is on a frictionless 35° slope and is connected via a massless...

    A 4.0 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hanging 2.0 kg weight. What is the acceleration (magnitude and direction) of the 2.0 kg block as the blocks are moving?

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a...

    A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.7 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string? 23.4 N Now the table is tilted at an angle of θ = 76° with respect to the vertical. Find the magnitude of the new acceleration of block 1. 2...

  • A 2.00 kg object A is connected with a massless string across a massless, frictionless pulley...

    A 2.00 kg object A is connected with a massless string across a massless, frictionless pulley to a 3.00 kg object B. The smaller object rests on an inclined plane which is tilted at an angle 40 degrees as shown. What are the acceleration of the system and the tension in the string?

  • A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a...

    A mass, m1 = 5.47 kg, resting on a frictionless horizontal table is connected to a cable that passes over a pulley and then is fastened to a hanging mass, m2 = 12.67 kg, as in the figure. When we release the mass m1, it accelerates across the table. Find (a) the acceleration (m/s2 ) of the masses and (b) the tension (N) in the cable. Neglect the mass of the cable and pulley.

  • The system shown in the figure below consists of a mass M = 3.3-kg block resting...

    The system shown in the figure below consists of a mass M = 3.3-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 1.7-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 3.3 kg _____ m/s2 acceleration...

  • A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.7 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. How much work is done by the normal force on m1? What is the final speed of the two blocks? What is the tension in the string as the block falls? The work done...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT