Question

The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine...

The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of23.4 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

0 0
Add a comment Improve this question Transcribed image text
Answer #1
During the adiabatic process there is no exchange of heat , so Q1 = 0
The amount of heat entering or leaving the system during the isobaric compression is
Q2 = Cp nR?T
= (7/2)(1)(P?V)
= (7/2)(1atm)(-23.4 + 9L)
= -50.4 atmL
In adibatic process
PV^? = constant
then P1V1^? = P2V2^?
then P1 = (V2/V1)^? P2
= (23.4/9)^1.4 (1atrn)
= 3.18 atm
The amount of the heat entering or leaving the system during the constant-volume process is
Q3 = Cv nR?T
= (5/2)(1)(?PV)
= (5/2)(6 - 1)(9)
= 112.5 atmL
Therefore the workdone
W = Q1+Q2+Q3
= 0-50.4 + 112.5
= 62.1 atm L
the efficiency
e = 62.1 / 112.5
= 0.552 or 55.2%   
Add a comment
Know the answer?
Add Answer to:
The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in...

    The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of 30.6 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

  • An engine using 1 mol of an ideal gas initially at 22.3 L and 454 K...

    An engine using 1 mol of an ideal gas initially at 22.3 L and 454 K performs a cycle consisting of four steps: 1) an isothermal expansion at 454 K from 22.3 L to 40 L ; 2) cooling at constant volume to 270 K ; 3) an isothermal compression to its original volume of 22.3 L; and 4) heating at constant volume to its original temperature of 454 K . Find its efficiency. Assume that the heat capacity is...

  • The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas....

    The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 900 J in each cycle. Compute the temperatures of the two reservoirs between which this engine operates.

  • 34) The working substance of an engine is one mole of a diatomic ideal gas. The...

    34) The working substance of an engine is one mole of a diatomic ideal gas. The engine operates in a Cycle consisting of the Steps A-B-C-B-A Shown in the P-u diagram Point P, Pascals | Vm² I Kelvin TA 1506,500 (0.010 609.2 B 202,600 0.025 /609.2 1101300 10.025 /304.61 TO 101,300 1.010 (121.8 T Path 4 Eint, I Qin, J Won I A to B 10 4641 -4641 B to C -6332 / 6332 10 CoD 1- 3799 1- 5319...

  • 69. A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is...

    69. A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is considered as an ideal diatomic gas with γ =7.5 at the working temperatures of the engine. The Carnot cycle goes in the cycle ABCDA with AB being an isothermal expansion. The volume at points A and C of the cycle are 5.0×10−3 m3 and 0.15 L, respectively. The engine operates between two thermal baths of temperature 500 K and 300 K. (a) Find the...

  • A sample of 1.00 mol perfect gas molecules

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2 R is put through the following cycle:(a) Constant-volume heating to twice its initial volume,(b) Reversible, adiabatic expansion back to its initial temperature,(c) Reversible isothermal compression back to 1.00 atm. Calculate q, w, ?U, and ?H for each step and overall.

  • A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K...

    A sample of 1.00 mol perfect gas molecules with Cp,m = 7/2R and at 298 K and 1.00 atm is put through the following cycle: (a) Constant volume heating to twice its initial pressure, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate q, w, ΔU, and ΔH for each step and overall (assume the initial temp is 298 K).

  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

  • A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram bel...

    A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram below. Process 1 → 2 is at constant volume, process 2-) 3 is adiabatic, and process 3-1 is at a constant pressure of P = 2.00 atm. The value of r for this gas is 1.4 2,7-600K T,-300 K T, 492 K 0 (a) Find the pressure and volume at points 1, 2, and 3. pressure (Pa) volume (m3) point 1 point...

  • A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working...

    A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working s ubstance. In t he first step, the gas is place d in thermal contact with a heat reservoir and expands isothermally to 3 .0 times its initial volume. (a) If the internal energy o f the gas after this step is 6.25 k J , calculate the temperature of the heat reservoir ( T h ) . (b) C alculate the heat absorbed...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT