Question

An engine using 1 mol of an ideal gas initially at 22.3 L and 454 K...

An engine using 1 mol of an ideal gas initially at 22.3 L and 454 K performs a cycle consisting of four steps: 1) an isothermal expansion at 454 K from 22.3 L to 40 L ; 2) cooling at constant volume to 270 K ; 3) an isothermal compression to its original volume of 22.3 L; and 4) heating at constant volume to its original temperature of 454 K . Find its efficiency. Assume that the heat capacity is 21 J/K and the universal gas constant is 0.08206 L · atm/mol/K = 8.314 J/mol/K. Answer in units of %.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans: Given n = 1 mol, V1 = 22.3 L, T1 = 454 K => P1 = nRT1/V1 = 1.671 atm

Step-1: T = 0 => U = 0, T2 = 454 K, V2 = 40L => P2 = nRT2/V2 = 0.931 atm

Work done by gas

From 1st law of thermodynamics,

Step-2: V = 0 =>V3 = 40L, W = 0, T3 = 270 K => T = 270 - 454 = -184 K

W2 = 0 J

Q2 = U = nCT = 1 x 21 x -184 = -3864 J

Step-3:  T = 0 => U = 0, T4 = 270 K, V4 = 22.3L => P4 = nRT4/V4 = 0.994 atm

Work done by gas

From 1st law of thermodynamics,

Step-4: V = 0 => W = 0 => T = 454-270 = 184 K

W2 = 0 J

Q4 = U = nCT = 1 x 21 x 184 = 3864 J

Total Heat given to the system is Q = Q1 +Q4 = 6069.446 J

Net work done W = W1+ W2+ W3+ W4 = 893.837 J

Efficiency = W/Q = 0.1473 = 14.73%

Add a comment
Know the answer?
Add Answer to:
An engine using 1 mol of an ideal gas initially at 22.3 L and 454 K...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine...

    The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of23.4 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

  • Part A A heat engine with 0.500 mol of a monatomic ideal gas initially fills a...

    Part A A heat engine with 0.500 mol of a monatomic ideal gas initially fills a 3000 cm3 cylinder at 600 K The gas goes through the following closed cycle: - Isothermal expansion to 4000 cm How much work does this engine do per cycle? Express your answer with the appropriate units 3 239 J sochoric cooling to 400 K Isothermal compression to 3000 cm3 Isochoric heating to 600 K rev Vious Answers Answer Requested Part B What is its...

  • The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in...

    The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of 30.6 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

  • part C and E. Please label each part with its answer. 3. A Sterling engine using...

    part C and E. Please label each part with its answer. 3. A Sterling engine using 1.00 mol of an ideal gas initially at a volume of 24.6L and a temperature of 400K performs a cycle consisting of four steps: (1) An isothermal expansion at a temperature of 400K to twice its initial volume. (2) Cooling at constant volume to a temperature of 300K (3) An isothermal compression to its original volume (4) Heating at constant volume to its original...

  • The volume of 3.3 mol of ideal gas is 45.7 L at 350 K. Calculate its...

    The volume of 3.3 mol of ideal gas is 45.7 L at 350 K. Calculate its pressure (in atmospheres). L atm L kPa • Use R = 0.08206 314 for the ideal gas constant. mol K Your answer should have two significant figures. Do NOT include units in your response. mol K for the Provide your answer below:

  • (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at...

    (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put tho...

    A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • 0.780 mol of an ideal gas, at 51.01 °C, is expanded isothermally from 1.94 L to...

    0.780 mol of an ideal gas, at 51.01 °C, is expanded isothermally from 1.94 L to 3.14 L. 1. What is the initial pressure of the gas, in atm? 1.07×101 atm You are correct. 2. What is the final pressure of the gas, in atm? 3. How much work is done on the gas, (in J), if the expansion is carried out in two steps by changing the volume irreversibly from 1.94 L to 3.14 L against a constant pressure...

  • (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then p...

    (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, ΔU, ΔH, ΔS for each process and for the whole cycle.

  • 1 00 mol of a perfect gas initially at 1 00 atm and 298 K with...

    1 00 mol of a perfect gas initially at 1 00 atm and 298 K with Cpm (7/2) R is put through the following cycle () constant-volume heating to twice its initial temperature (u) reversible, adiabatic expansion back to its onginal temperature () reversible, isothermal compression back to 1 00 atm Calculate q, w, AU, and AH for each of the steps ()-(m) above Hints First calculate AU, then q AH easily follows Remember the meaning of an adiabatic process...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT