Question

69. A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is...

69. A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is considered as an ideal diatomic gas with γ =7.5 at the working temperatures of the engine. The Carnot cycle goes in the cycle ABCDA with AB being an isothermal expansion. The volume at points A and C of the cycle are 5.0×10−3 m3 and 0.15 L, respectively. The engine operates between two thermal baths of temperature 500 K and 300 K. (a) Find the values of volume at B and D.

This is the question copied directly out of the textbook and I am extremely confused on the information that they give. For instance, since nitrogen gas is diatomic, wouldn't γ = 7/5 instead of 7.5? Also, if a Carnot engine expands for its first two phases, then how is it possible that the volume at point C smaller than the volume at point A? That doesn't seem right. I am doing problems to study for a test, and so I was wondering if the textbook's information is incorrect or if I am just completely missing something. I just don't know where to start. Thanks!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
69. A Carnot engine employs 1.5 mol of nitrogen gas as a working substance, which is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas....

    The working substance of a certain Carnot engine is 1.80 mol of an ideal monatomic gas. During the isothermal expansion portion of this engine's cycle, the volume of the gas doubles, while during the adiabatic expansion the volume increases by a factor of 5.7. The work output of the engine is 900 J in each cycle. Compute the temperatures of the two reservoirs between which this engine operates.

  • A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working...

    A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working s ubstance. In t he first step, the gas is place d in thermal contact with a heat reservoir and expands isothermally to 3 .0 times its initial volume. (a) If the internal energy o f the gas after this step is 6.25 k J , calculate the temperature of the heat reservoir ( T h ) . (b) C alculate the heat absorbed...

  • Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas molecules,...

    Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas molecules, the temperature of the hot source is 373 K, that of the cold sink is 273 K; the initial volume of gas is 1.00 dm', which doubles over the course of the first isothermal stage. For the reversible adiabatic stages it may be assumed that VT3/2 = constant. a) calculate the volume of the gas VB and Vc); b) calculate the volume of the...

  • For a Carnot engine with 10 moles of ideal gas (Cv = 1.5 nR) and operating...

    For a Carnot engine with 10 moles of ideal gas (Cv = 1.5 nR) and operating between a hot reservoir of 500 K and a cold reservoir of 300 K, a) What would be the heat exchanges (q1) and entropy change (∆S1) for step 1, where the gas reversibly and isothermally expands to double its volume (V2 = 2 V1) at 500 K? b) What would be the heat exchanges (q3) and entropy change (∆S3) for step 3, where the...

  • The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine...

    The working substance of an engine is 1.00 mol of a diatomic ideal gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of23.4 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

  • The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in...

    The working substance of an engine is 1.00 mol of diatomic gas. The engine operates in a cycle consisting of three steps: (1) an adiabatic expansion from an initial volume of 9.00 L to a pressure of 1.00 atm and a volume of 30.6 L, (2) a compression at constant pressure to its original volume of 9.00 L, and (3) heating at constant volume to its original pressure. Find the efficiency of this cycle.

  • Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and...

    Suppose 0.270 mol of an ideal diatomic gas (γ=1.40) undergoes a Carnot cycle between 327C and 127C, starting at pa =12.0x105 Pa at point a in the pV-diagram for the Carnot cycle. The volume doubles during the isothermal expansion step a to b. (a) Find the pressure and volume at points a, b, c and d. (b) Find Q, W and dU for each step and for the entire cycle. (c) Find the efficiency directly from the results of part...

  • For a Carnot engine with 10 moles of ideal gas (Cv= 1.5 nR) and operatingbetween a...

    For a Carnot engine with 10 moles of ideal gas (Cv= 1.5 nR) and operatingbetween a hot reservoir of 500 K and a cold reservoir of 300 K,a. (6 Points) What would be the heat exchanges (q1) and entropy change (∆S1) for step 1, where thegas reversibly and isothermally expands to double its volume (V2= 2 V1) at 500 K?b. (6 Points) What would be the heat exchanges (q3) and entropy change (∆S3) for step 3, where thegas is reversibly...

  • A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle....

    A 1.00-mol sample of an ideal gas (γ = 1.40) is carried through the Carnot cycle. Before the isothermal expansion takes place, the pressure of the gas is 25.0 atm and the temperature is 600 K. Before the isothermal compression, the pressure is 1.00 atm and the temperature is 400 K. Determine the pressures and volumes at all end points in the Carnot cycle (at each end point, the cycle switches between different processes).

  • please show units in detail P In a heat engine 1 mol of a monatomic gas...

    please show units in detail P In a heat engine 1 mol of a monatomic gas is carried through the cycle ABCDA shown (diagram not to scale). The segment AB is an isothermal expansion, BC is an adiabatic expansion. The pressure and temperature at A are 4 atm & 500 K. The volume at B is twice the volume at A. The B pressure at D is 1 atm. (a) What is the pressure at B? (b) What is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT