Question

A) When is a circuit containing resistor R, inductor L, and capactior C said to be...

A) When is a circuit containing resistor R, inductor L, and capactior C said to be in resonance?

B) What is the phase angle between curent and voltage when a R, L, C circuit is at resonance?

C) At resonance what is the relationship between inductive and capactance reactance?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A)

a circuit containing R , L ,C is said to be in resonance , when the circuit offers minimum impedance , which will result in maximum current in the circuit.

B)

as Resonance , as the load is purely resistive , the phase angle between voltage and current is ZERO.

C)

at resoanance , the inductive and capacitve reactance is equal in magnitude and they cancel each other

Add a comment
Know the answer?
Add Answer to:
A) When is a circuit containing resistor R, inductor L, and capactior C said to be...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and...

    Inductive Reactance: Build a series circuit in Multisim containing a 1ks Resistor, 33mH inductor L, and 4 VRMS 8kHz sinewave source. Calculate the, Inductive reactance X_ showing your formula: XL = ΚΩ Then measure the following with whatever Multisim instrument you want: Inductor peak-peak voltage VLpp = Resistor RMS voltage VRrms = Inductor RMS voltage Verms = Circuit RMS current Irms = mA

  • An inductor (L = 365 mH), a capacitor (C = 4.43 uF), and a resistor (R...

    An inductor (L = 365 mH), a capacitor (C = 4.43 uF), and a resistor (R = 6052) are connected in series. A 50.0 Hz AC source produces a peak current of 250 mA in the circuit. (a) Calculate the required peak voltage AV max (b) Determine the phase angle by which the current leads or lags the applied voltage. Step 1 The total impedance depends on the frequency and the resistance of the circuit. The voltage amplitude is in...

  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50...

    A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...

  • A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80...

    A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80 f, and a generator with Av max - 240 V operating at 50.0 Hz. The maximum current in the circuit is 130 mA (a) Calculate the inductive reactance (b) Calculate the capacitive reactance (c) Calculate the impedance kn (d) Calculate the resistance in the circuit kn (e) Calculate the phase angle between the current and the generator voltage

  • A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30...

    A series AC circuit contains a resistor, an inductor of 200 mH, a capacitor of 4.30 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 180 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °

  • A circuit consists of a resistor, capacitor, and inductor connected in series to an AC source....

    A circuit consists of a resistor, capacitor, and inductor connected in series to an AC source. As the source frequency increases, the current in the circuit decreases. Which statement about the circuit is NOT correct as the source frequency increases? a) The inductive reactance increases. b) The circuit is said to become more capacitive than inductive.     c) The total power from the source decreases. d) The impedance of the circuit increases. e) The phase angle for the circuit becomes more...

  • A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20...

    A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...

  • In an R-L-C series circuit, the magnitude of the phase angle is 40.0o, with the source...

    In an R-L-C series circuit, the magnitude of the phase angle is 40.0o, with the source voltage behind the current. The reactance of the capacitor is 300 ohms, and the resistor resistance is 150 ohms. The average power delivered by the source is 120 W. a. What is the reactance of the inductor? b. What is the impedance of the circuit? c. What is the rms current in the circuit? d. What is rms voltage of the source?

  • 4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an A...

    4) An RLC circuit consists of a resistor, a inductor, and a capacitor connected in series to an AC voltage source with an RMS voltage of 59 volts. At half the resonant frequency, the phase angle is -35 degrees and the inductive reactance is 46 Ohms. What is the average dissipated power at twice the resonant frequency in Watts?

  • Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF),...

    Consider an RLC circuit where a resistor (R = 35.0 Ω), capacitor (C = 15.5 μF), and inductor (L = 0.0940 H) are connected in series with an AC source that has a frequency of 80.0 Hz. a. Determine the capacitive reactance at this frequency. b. Determine the inductive reactance at this frequency. c. Determine the total impedance. d. Determine the phase angle. e. Determine the circuit’s resonant frequency.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT