Question

A negatively charged particle enters a region between two parallel plates. Each plate (top and bottom)...

A negatively charged particle enters a region between two parallel plates. Each plate (top and bottom) are oppositely charged, hence the exists a uniform electric field between the plates along with a gravitational field). Assume the particle travels the region straight through completely un-deflected and exits. 
a) Determine and identify below) te polarities of the plates and the resulting Electric Field direction inside the plated region needed so the particle travels through un-deflected: 
b) If the particle has a mass of 28.5 mg and a charge of -7.6 uc, determine the Electric Field Strength E needed inside the plated region so the particle travels through un-deflected (Fnet=0 )
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

here , as there in no deflection ,

the electric force must be in upwards direction to counter the gravity.

as the charge is negative ,

electic field is in downwards direction.

upper plate is positve and lower is negative

b)

Now,

q *E = m*g

7.6 *10^-6 * E = 28.5 *10^-6 * 9.8

E = 36.8 N/C

the eletcic field strength is 36.8 N/C

Add a comment
Know the answer?
Add Answer to:
A negatively charged particle enters a region between two parallel plates. Each plate (top and bottom)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. A negatively charged particle enters a region between two parallel plates. Each plate (top and...

    2. A negatively charged particle enters a region between two parallel plates. Each plate (top and bottom) are oppositely charged as shown, hence there exists a uniform electric field between the plates (along with a gravitational field). Assume the particle travels straight through the region completely un-deflected and exits a) Sketch the resulting Electric Field inside the plated region: b) If the particle has a mass of 39.2 mg and a charge of+ 8.6 uC, determine the Electric Field E...

  • A uniform electric field exists in a region between two oppositely charged parallel plates. An electron...

    A uniform electric field exists in a region between two oppositely charged parallel plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 2 cm distant from the first, in a time interval of 1.5x10 s. (a) Find the electric field , (b) find the velocity of the electron when it strikes the second plate.

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. A...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.50×10−6 s. Find the magnitude of the electric field and the speed of the proton when it strikes the negatively charged plate.

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. A...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.40 cm distant from the first, in a time interval of 3.50x10-6 s. Find the magnitude of the electric field Find the speed of the proton when it strikes the negatively charged plate

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. A...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 2.60×10−6 s . A.) Find the magnitude of the electric field, with units. B.) Find the speed of the proton when it strikes the negatively charged plate.

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart....

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.41×10−6 . A) Find the magnitude of the electric field. Use 1.60×10−19 for the magnitude of the charge on an electron and 1.67×10−27 for the mass of a proton. ------ N/C B)Find the speed of the proton at...

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. An...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 4.00 cm distant from the first, in a time interval of 2.40×10−8 s . A. Find the magnitude of this electric field. B. Find the speed of the electron when it strikes the second plate.

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. A...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.80×10−6 s . Part A Find the magnitude of the electric field. Part B Find the speed of the proton when it strikes the negatively charged plate.

  • A uniform electric field exists in a region between two oppositely charged plates. An electron is...

    A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate 6.00 cm. away, in a time of 1.80E-08 s. What is the magnitude of the electric field (in newtons/coulomb)?

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. An...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 4.00 cm distant from the first, in a time interval of 2.30×10−8 s . PART A- Find the magnitude of this electric field. (unit: N/C) PART B- Find the speed of the electron when it strikes the second plate. (unit: m/s)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT