Question

In laboratory two air-track gliders collide and stick together because of Velcro tape on each of...

In laboratory two air-track gliders collide and stick together because of Velcro tape on each of them. Glider A has a mass of 200g and is moving to the right at 3.0 m/s before collision. Glider B has a mass of 100 g and is moving to the right at 1.0 m/ before the collision. What is their combined velocity after the collision?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

月 フ ヲ

Add a comment
Know the answer?
Add Answer to:
In laboratory two air-track gliders collide and stick together because of Velcro tape on each of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two gliders collide on a frictionless air track that is aligned along the x axis. Glider...

    Two gliders collide on a frictionless air track that is aligned along the x axis. Glider A has an initial velocity v0 and glider B is initially at rest. After they collide, A has a velocity +12v0 and B has a velocity +52v0. Find the ratio of the gliders' masses, mAmB.

  • There are two air-track gliders (A, B). A has mass of 1 kg and moves forward...

    There are two air-track gliders (A, B). A has mass of 1 kg and moves forward at a velocity of 2 m/s. B has mass of 3 kg and moves backward at a velocity of –1 m/s. They collide with each other and stick together afterward. How much kinetic energy (in Joule) is lost after the collision? m /s 1 m /s

  • wo gliders collide on a frictionless air track that is aligned along the x axis. Glider...

    wo gliders collide on a frictionless air track that is aligned along the x axis. Glider A has an initial velocity v0 and glider B is initially at rest. After they collide, A has a velocity +12v0 and B has a velocity +32v0. Find the ratio of the gliders' masses, mAmB.

  • Question 8. (15 Marks) Two gliders move toward each other on a frictionless track (Figure O8a)....

    Question 8. (15 Marks) Two gliders move toward each other on a frictionless track (Figure O8a). Glider A has a mass of 0.50 kg, and glider B has a mass of 0.30 kg: both gliders move with an initial speed of 2.0 m/s. (a) Assume that after the collision, glider B moves away with a final velocity of +2.0 m/s (Figure Q8c). What is the final velocity of A? (b) Assume that after the collision, the two gliders stick together...

  • 3. Two gliders are moving toward each other on a horizontal track. Glider A has a...

    3. Two gliders are moving toward each other on a horizontal track. Glider A has a mass of 500 g and is moving with a velocity of 50 cm/s. Glider B has a mass of 200 g and is moving with a velocity of -50 cm/s. After a head-on collision, glider A moves with a velocity of 20 cm/s and glider B moves with a velocity of 25 cm/s. a. Calculate the total initial and final momenta of the two...

  • Two blobs of clay collide and stick together, moving off at the same velocity. Before the...

    Two blobs of clay collide and stick together, moving off at the same velocity. Before the collision, the first blob (m = 1.00 kg) is moving with v = +2.00 m/s and the second blob (m = 2.22 kg) is moving with v = 1.00 m/s. How fast is the combined blob of clay moving after the collision?

  • Two pieces of clay are moving directly toward each other. When they collide, they stick together...

    Two pieces of clay are moving directly toward each other. When they collide, they stick together and move as one piece. One piece having mass 300 g is moving to the right at a speed of 1 m/s. The other piece has mass 600 g and is moving to the left at a speed of 0.75 m/s. a) Use momentum conservation to determine the velocity of the combined clay piece after they collide. (Note: you can treat this as a...

  • Two hockey players are skating on the ice when they collide and stick together. Before the...

    Two hockey players are skating on the ice when they collide and stick together. Before the collision the 111 kg defensive player is moving at 1.50 m/s in the West direction, and the 93 kg right wing player is moving at 5.90 m/s at an angle of 27.0° South of Westward. a. What type of collision occurs? Will energy be conserved? b. Find the final velocity of the joined hockey players. Answer in POLAR form. c. Calculate the % of...

  • Two pieces of clay are moving directly toward each other. When they collide, they stick together...

    Two pieces of clay are moving directly toward each other. When they collide, they stick together and move as one piece. One piece having mass 300~\text{g}300 g is moving to the right at a speed of 1~\text{m/s}1 m/s. The other piece has mass 600~\text{g}600 g and is moving to the left at a speed of 0.75~\text{m/s}0.75 m/s. Use momentum conservation to determine the velocity of the combined clay piece after they collide. (Note: you can treat this as a one-dimensional...

  • Page 237 Practice Problem 8.9: Suppose we interchange the two gliders, making m= 0.30 kg and...

    Page 237 Practice Problem 8.9: Suppose we interchange the two gliders, making m= 0.30 kg and m50Kg (We also turn them around so that the springs still meet.) If the initial speeds are the same as before, find the two final velocities. Answers:-3.0 m/s, 1.0 m.s. Answer a sto EXAMPLE 8.9 Elastic collision on an air track Video Tutor Solution Let's look at another collision between the air-track gliders of Examples 8.4 and 8.6. This time, we equip the gliders...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT