Question

Consider three (causal) LTI systems, corresponding to transfer functions described (except for gain K) by the following pole-

0 0
Add a comment Improve this question Transcribed image text
Answer #1

→ consider system ® Transter function GCS) hos): (5+) (SHO) lime constant form of GCS) 10(1+5)(H ) -10 is an insignificant poConsider system @ ks GCS): (5+10) (81100) -100 --to Ks 1000(1+3)(46) Poles giveas -20dB/dec slope Zero gives thodb/dec slope

Add a comment
Know the answer?
Add Answer to:
Consider three (causal) LTI systems, corresponding to transfer functions described (except for gain K) by the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a causal LTI S9Stem whch s Characterized by the differente euation a) Determine the transfer...

    Consider a causal LTI S9Stem whch s Characterized by the differente euation a) Determine the transfer Suntion, H(z) os the b) Plot +he pole-Zero diagram for the soh d) Determ ine the impulse response os the o S9stem c) Is the system stable? Tastify your answer e) Find the response os the sostem,uhi,i the

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • 5. Consider an LTI system with transfer function H(s). Pole-zero plot of H(s) is shown below....

    5. Consider an LTI system with transfer function H(s). Pole-zero plot of H(s) is shown below. Im (a) How many ROCs can be considered for this system? (b) Assume system is causal. Find ROC of H(S) (c) Assume y(t) is system output with step unit as input. Given lim y(t) = 5 , 00 Find H(s).

  • 3. Consider an LTI system with transfer function H(s). Pole-zero plot of H(s) is shown below....

    3. Consider an LTI system with transfer function H(s). Pole-zero plot of H(s) is shown below. Im O--- Re (a) How many ROCs can be considered for this system? (b) Assume system is causal. Find ROC of H(S) (c) Assume y(t) is system output with step unit as input. Given lim yết) = 5 , Find H(s). (d) (optional) Find y(2) (y(t) for t = 2).

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • 4. 1 20 points). Consider a causal LTI system with a pole-zero plot for th the dfee equation H(2) as show below. The system is known to have a DC gain of 1. Find the difference equation for this...

    4. 1 20 points). Consider a causal LTI system with a pole-zero plot for th the dfee equation H(2) as show below. The system is known to have a DC gain of 1. Find the difference equation for this system. Show all work. Z - plane 0.5 -0.5 0.5e 4. 1 20 points). Consider a causal LTI system with a pole-zero plot for th the dfee equation H(2) as show below. The system is known to have a DC gain...

  • 1. A causal LTI system is implemented by the difference equation y(n) = 2r(n) - 0.5...

    1. A causal LTI system is implemented by the difference equation y(n) = 2r(n) - 0.5 y(n-1). (a) Find the frequency response H/(w) of the system. (b) Plot the pole-zero diagram of the system. Based on the pole zero diagram, roughly sketch the frequency response magnitude |H'(w). (c) Indicate on your sketch of H w , its exact values at w=0, 0.5, and . (d) Find the output signal y(n) produced by the input signal (n) = 3 + cos(0.5...

  • Problem 3. The input and the output of a stable and causal LTI system are related...

    Problem 3. The input and the output of a stable and causal LTI system are related by the differential equation dy ) + 64x2 + 8y(t) = 2x(t) dt2 dt i) Find the frequency response of the system H(jw) [2 marks] ii) Using your result in (i) find the impulse response of the system h(t). [3 marks] iii) Find the transfer function of the system H(s), i.e. the Laplace transform of the impulse response [2 marks] iv) Sketch the pole-zero...

  • Consider a causal LTI system implemented as the RL circuit shown below. In this circuit, v(t)...

    Consider a causal LTI system implemented as the RL circuit shown below. In this circuit, v(t) is the input voltage. The current i(t) is considered the system output. i(t) R L wwwm v(t) (a) Find the differential equation relating v(t) and i(t). (b) Determine the frequency response of this system (H(jw)). (c) Determine the output it) if v(t) = sin(t), R=10 and L=1. (d) Sketch Bode plot of H (jw) for R=10 and L=1. (e) Determine if the system is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT