Question

Two blocks are free to side along the frctionless wooden track shown below. The block of mass m -5.08 kg is released from the position shown, at height h 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in block of mass m2 11.0kg, instially at rest. The two blocks never touch. Calculate the maximum height to which m, rises after the elastic 13. O -2 points SerPSE 10 9.6 0P023 s at +2.9o m, a 2.98-kg obiect is at +2.57 m, a 2.40-ka object is at the origin, and a 4.01-kg
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two blocks are free to side along the frctionless wooden track shown below. The block of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks are free to slide along the frictionless wooden track shown below. The block of...

    Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m_1 = 4.92 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m_z = 9.40 kg initially at rest. The...

  • Two blocks are free to slide along the frictionless wooden track shown below. The block of...

    Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.03 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 9.50 kg, initially at rest. The...

  • = 4.90 kg is released from the position shown, at height h = 5.00 m above...

    = 4.90 kg is released from the position shown, at height h = 5.00 m above the flat part of the track Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m, 10.5 kg, initially at rest. The Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m, two...

  • 31. On a frictionless wooden track as shown below, a block ofm2 = 10.0 kg initially...

    31. On a frictionless wooden track as shown below, a block ofm2 = 10.0 kg initially sits at rest on the flat part which is infinitely long; and a block of mass m-0.5 kg is to be released from a point of the track which is at a height h above the flat part of the track. Collisions between blocks of mi and m2 are always elastic. How many total collisions,can happen between the two blocks? 、、、 a. c. d...

  • Two blocks move along a linear path on a nearly frictionless air track. One block, of...

    Two blocks move along a linear path on a nearly frictionless air track. One block, of mass 0.105 kg, initially moves to the right at a speed of 4.50 m/s, while the second block, of mass 0.210 kg, is initially to the left of the first block and moving to the right at 7.10 m/s. Find the final velocities of the blocks, assuming the collision is elastic. velocity of the 0.105 kg block = velocity of the 0.210 kg block...

  • Two blocks move along a linear path on a nearly frictionless air track. One block, of...

    Two blocks move along a linear path on a nearly frictionless air track. One block, of mass 0.116 kg, initially moves to the right at a speed of 5.20 m/s, while the second block, of mass 0.232 kg, is initially to the left of the first block and moving to the right at 7.30 m/s. Find the final velocities of the blocks, assuming the collision is elastic. Velocity of the .116 kg block to the right: Velocity fo the .232...

  • A bullet of mass m = 23 g is fired into a wooden block of mass...

    A bullet of mass m = 23 g is fired into a wooden block of mass M = 4.4 kg as shown in the figure below. The block is attached to a string of length 1.5 m. The bullet is embedded in the block, causing the block to then swing as shown in the figure. If the block reaches a maximum height of h = 0.25 m, what was the initial speed of the bullet? m/s Bullet

  • Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.65 kg is released from A

    Consider a frictionless track as shown in the figure below. A block of mass  m1 = 5.65 kg is released from  A. It makes a head-on elastic collision at  B with a block of mass  m2 = 20.0 kg  that is initially at rest. Calculate the maximum height to which m1 rises after the collision.Two masses are shown on a frictionless wooden track. The left part of the track curves downward from left to right, starting from an almost-vertical slope and then decreasing in...

  • A 35 g bullet is fired horizontally into a hanging wooden block (mass 1.7kg) as shown...

    A 35 g bullet is fired horizontally into a hanging wooden block (mass 1.7kg) as shown in (Figure 1). The bullet's initial speed is 300 m/s . The bullet becomes embedded in the block, which then swings upward some height. What is the maximum height to which the block rises? Instead of getting embedded in the block, the bullet passes completely through it, emerging on the other side with a speed of 100 m/s . How high does the block...

  • Figure shown above.Please show all work with algebra. На m2 Problem 3. 3. Two blocks of...

    Figure shown above.Please show all work with algebra. На m2 Problem 3. 3. Two blocks of masses m-1.0 kg and m2 2.0 kg are free to slide along a wooden track with a spring of force constant k 1000 N/m at one end, as shown in the figure below. The wooden track is frictionless except for a length of 1.5 m, where the coefficient of kinetic friction is 0.25. The block mi is released from rest at a height 1.0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT