Question

To set up and evaluate the equations of motion in a normal-tangential coordinate system. A car...

To set up and evaluate the equations of motion in a normal-tangential coordinate system.

A car of weight 13.1 kN is traveling around a curve of constant curvature ρ.

Part A - Finding the net friction force

The car is traveling at a speed of 21.5 m/s , which is increasing at a rate of 2.15 m/s2 , and the curvature of the road is ρ = 190 m . What is the magnitude of the net frictional force that the road exerts on the tires?

Part B - Finding the maximum allowable acceleration

Suppose that the tires are capable of exerting a maximum friction force of 5180 N . If the car is traveling at 16.5 m/s and the curvature of the road is ρ = 140 m , what is the maximum tangential acceleration that the car can have without sliding?

Part C - Finding the minimum curvature of the road

Suppose that the tires are capable of exerting a maximum net friction force of 3820 N . If the car is traveling at 22.5 m/s , what is the minimum curvature of the road that will allow the car to accelerate at 1.55 m/s2 without sliding?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

crs Lomse tial 19o rn- 3252-13m 140 Cu 3870시,贮22-5 L15362301)2091N 2 32 09.29 622-52 320928 210 6

Add a comment
Know the answer?
Add Answer to:
To set up and evaluate the equations of motion in a normal-tangential coordinate system. A car...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part A. The sports car, having a mass of 1700 kg, is traveling horizontally along a...

    Part A. The sports car, having a mass of 1700 kg, is traveling horizontally along a 20° banked track which is circular and has a radius of curvature of ρ = 100 m. If the coefficient of static friction between the tires and the road is μs = 0.2 . Determine the maximum constant speed at which the car can travel without sliding up the slope. Neglect the size of the car. Part B. Using Data in Part A, determine...

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • A 13004 N car traveling at 41.4 km/h rounds a curve of radius 2.28 × 102...

    A 13004 N car traveling at 41.4 km/h rounds a curve of radius 2.28 × 102 m. The acceleration of gravity is 9.81 m/s2 . a) Find the centripetal acceleration of the car. Answer in units of m/s2 b) Find the force that maintains circular motion. Answer in units of N. c) Find the minimum coefficient of static friction between the tires and the road that will allow the car to round the curve safely.

  • Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level...

    Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level circular turn of radius 46.0 m, as shown in the bird's-eye view in Figure 7.13a. What minimum coefficient of static friction, Aus, between the tires and the roadway will allow the car to make the circular turn without sliding? Strategy In the car's free-body diagram (Fig. 7.13b) the normal direction is vertical and the tangential direction is into the page (step 2). Use Newton's...

  • Example 7.7 Buckle Up for Safety Goal Calculate the frictional force that causes an object to...

    Example 7.7 Buckle Up for Safety Goal Calculate the frictional force that causes an object to have a centripetal acceleration. Problem A car travels at a constant speed of 31.5 mi/h (14.1 m/s) on a level circular turn of radius 55.0 m, as shown in the bird's-eye view in Figure 7.13a. What minimum coefficient of static friction, µs, between the tires and the roadway will allow the car to make the circular turn without sliding? Strategy In the car's free-body...

  • A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular...

    A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular turn of radius 49.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, μs, between the tires and the roadway will allow the car to make the circular turn without sliding? 1 ) make the circular turn without sliding? 2 ) At what maximum speed can a car negotiate a turn on a wet road with coefficient...

  • A car travels around a horizontal bend of radius 177 m at a constant speed. (a)...

    A car travels around a horizontal bend of radius 177 m at a constant speed. (a) If the coefficient of the static friction between the road and car tyres is us = 0.6 then what is the maximum speed that the car can negotiate the bend without sliding from the road? m/s Fil (b) What is the magnitude of car's acceleration at the speed calculated in (a)? m/s2 (c) Later, the road at the bend was modified so that the...

  • A 1,200-kg car is traveling on an icy horizontal road at 30 m/s. The maximum rate...

    A 1,200-kg car is traveling on an icy horizontal road at 30 m/s. The maximum rate at which the car can decelerate without sliding on the ice is 1.2 m/s2; reaching this value will immediately result in sliding uncontrollably with a reduced sliding friction of 700 N. If the driver panics and slams hard on the brakes, then how far will the car slide before stopping? Answer in km.

  • A car moving with a constant speed of 85 km/h enters a circular, flat curve with...

    A car moving with a constant speed of 85 km/h enters a circular, flat curve with a radius of curvature of 0.40 km. If the friction between the road and the car’s tires can support a centripetal acceleration of 1.25 m/s2, without slipping, does the car navigate the curve safely, or does it fly off the road?

  • Banked curves are designed so that the radial component of the normal force on the car rounding

    Banked curves are designed so that the radial component of the normal force on the car rounding the curve provides the centripetal force required to execute uniform clrcular motion and safely negotlate the curve. A car rounds a banked curve with banking angle θ-27.1° and radius of curvature 157 m. (a) It the coefficient of static friction between the car's tires and the road is -0.316, what is the range ot speeds for which the car can safely negotiate the turn...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT