Question

Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level circular turn of radius 46.0 m, as shown in the
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Exencise 7.7 given: 0.205 Coefficient of astatie friction 23. S Radius of turn R 4 18N frictional foru= Ff Fs 7mg for equilubif you have any confusion then please ask me in the comment box.

Thank you

Add a comment
Know the answer?
Add Answer to:
Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular...

    A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular turn of radius 49.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, μs, between the tires and the roadway will allow the car to make the circular turn without sliding? 1 ) make the circular turn without sliding? 2 ) At what maximum speed can a car negotiate a turn on a wet road with coefficient...

  • Example 7.7 Buckle Up for Safety Goal Calculate the frictional force that causes an object to...

    Example 7.7 Buckle Up for Safety Goal Calculate the frictional force that causes an object to have a centripetal acceleration. Problem A car travels at a constant speed of 31.5 mi/h (14.1 m/s) on a level circular turn of radius 55.0 m, as shown in the bird's-eye view in Figure 7.13a. What minimum coefficient of static friction, µs, between the tires and the roadway will allow the car to make the circular turn without sliding? Strategy In the car's free-body...

  • A civil engineer wishes to redesign the curved roadway in the figure in such a way...

    A civil engineer wishes to redesign the curved roadway in the figure in such a way that a car will not have to rely on friction to round the curve without skidding. In other words, a car moving at the designated speed can negotiate the curve even when the road is covered with ice. Such a ramp is usually banked, which means that the roadway is tilted toward the inside of the curve. Suppose the designated speed for the road...

  • A car travels at constant speed around a corner. The cars speed is 35 m/s and...

    A car travels at constant speed around a corner. The cars speed is 35 m/s and the radius of the circle is 0.25 km. The coefficient of static friction between the tires and the road is 0.7. What is the frictional force needed for the car to make the turn? What is the maximum force the static friction can produce? Does the car stay on the road? The car is in motion so why is the static friction important?

  • A car travels around a horizontal bend of radius 177 m at a constant speed. (a)...

    A car travels around a horizontal bend of radius 177 m at a constant speed. (a) If the coefficient of the static friction between the road and car tyres is us = 0.6 then what is the maximum speed that the car can negotiate the bend without sliding from the road? m/s Fil (b) What is the magnitude of car's acceleration at the speed calculated in (a)? m/s2 (c) Later, the road at the bend was modified so that the...

  • A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The...

    A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one-sixth of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car? m/s

  • A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static fri...

    A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one third of its dry-road value. If the car is to continue safely around the curve, to what speed must the dirver slow the car?

  • Is it safe to drive your 1600-kg car at a speed 27 m/s around a level...

    Is it safe to drive your 1600-kg car at a speed 27 m/s around a level highway curve of radius 150 m if the effective coefficient of static friction between teh car and the road is 0.40? Use the method outlined below in bold to solve the problem: (Please show all work/explanations) Visual Representation: Sketch the Situation described in the problem Physical Situation: Write in words any assumptions made regarding objects and interactions Physical Representation: Indicate the direction of acceleration...

  • Brake or turn? Figure 6-45 depicts an overhead view of a car's path as the car...

    Brake or turn? Figure 6-45 depicts an overhead view of a car's path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is d = 109 m, and take the car's mass as m = 1430 kg, its initial speed as v0 = 37.0 m/s, and the coefficient of static friction as μs = 0.530. Assume that the car's weight is distributed evenly on the four wheels,...

  • Sort the following quantities as known, to find, or unneeded. Let m and v be the mass and speed of the car, re...

    Sort the following quantities as known, to find, or unneeded. Let m and v be the mass and speed of the car, respectively: mu_s is the coefficient of static friction, r is the radius of the circular path, n is the magnitude of the normal force acting on the car, and summation F_z is the x component of the net force acting on the car Use the information you collected in the Prepare step to find the net force on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT