Question

A car travels at constant speed around a corner. The cars speed is 35 m/s and...

A car travels at constant speed around a corner. The cars speed is 35 m/s and the radius of the circle is 0.25 km. The coefficient of static friction between the tires and the road is 0.7.

What is the frictional force needed for the car to make the turn?

What is the maximum force the static friction can produce?

Does the car stay on the road?

The car is in motion so why is the static friction important?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A car travels at constant speed around a corner. The cars speed is 35 m/s and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A car travels at constant speed around a horizontal circular corner of radius 5 m....

    1. A car travels at constant speed around a horizontal circular corner of radius 5 m. n (a) Given that the car just starts to skid if its speed is 12 km/h, find the frictional force acting on the car. (b) Assuming the same frictional force is acting, calculate the car's smallest possible turning radius if the speed is 30 km/h. (c) Calculate the turning radius for the car travelling at 12 km/h in wet conditions where the frictional force...

  • A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular...

    A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular turn of radius 49.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, μs, between the tires and the roadway will allow the car to make the circular turn without sliding? 1 ) make the circular turn without sliding? 2 ) At what maximum speed can a car negotiate a turn on a wet road with coefficient...

  • A car travels around a horizontal bend of radius 177 m at a constant speed. (a)...

    A car travels around a horizontal bend of radius 177 m at a constant speed. (a) If the coefficient of the static friction between the road and car tyres is us = 0.6 then what is the maximum speed that the car can negotiate the bend without sliding from the road? m/s Fil (b) What is the magnitude of car's acceleration at the speed calculated in (a)? m/s2 (c) Later, the road at the bend was modified so that the...

  • Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level...

    Problem A car travels at a constant speed of 29.5 mi/h (13.2 m/s) on a level circular turn of radius 46.0 m, as shown in the bird's-eye view in Figure 7.13a. What minimum coefficient of static friction, Aus, between the tires and the roadway will allow the car to make the circular turn without sliding? Strategy In the car's free-body diagram (Fig. 7.13b) the normal direction is vertical and the tangential direction is into the page (step 2). Use Newton's...

  • A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The...

    A car is safely negotiating an unbanked circular turn at a speed of 29 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one-sixth of its dry-road value. If the car is to continue safely around the curve, to what speed must the driver slow the car? m/s

  • A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static fri...

    A car is safely negotiating an unbanked circular turn at a speed of 18 m/s. The road is dry, and the maximum static frictional force acts on the tires. Suddenly a long wet patch in the road decreases the maximum static frictional force to one third of its dry-road value. If the car is to continue safely around the curve, to what speed must the dirver slow the car?

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • A car travels around an unbanked 60 m radius curve without skidding, If the coefficient of...

    A car travels around an unbanked 60 m radius curve without skidding, If the coefficient of friction between the tires and road is 0.4, what is the car's maximum speed? 55 kph 47 43 kph 76 kph 62 kph

  • 12. In turning a corner, a car of mass 2 000 kg describes on a horizontal...

    12. In turning a corner, a car of mass 2 000 kg describes on a horizontal plane a circle of radius 30 m at 14 m/s. Find the force of friction needed to produce this acceleration, and the least coefficient of friction needed between the tyres and the road. 13. In the preceding question find at what angle the track should be banked in order that there be no frictional force needed to produce the required acce- leration. 14. A...

  • A car travels at a speed of 21 m/s around a curve of 27 m. m...

    A car travels at a speed of 21 m/s around a curve of 27 m. m = 1500 kg (i) What is the net centripetal force needed to keep the car from skidding sideways? (ii) Were there no friction between the car’s tires and the road, what centripetal force would be provided just by banking the road at 29o? (iii) Now, suppose a friction force is also present and prevents the car from skidding. Calculate the magnitude of the normal...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT