Question

A 32 cm long violin string is pulled tight with a force

A 32 cm long violin string is pulled tight with a force of 40 N. The string has a mass of 5 x 10-4 kg/m.
    (A) How fast do waves travel along this string?
    (B) If the frequency of a certain standing wave (which is NOT the fundamental) on this string is 1320 Hz, what is its wavelength?
    (C) If this wave in part B is a standing wave on the violin string, draw the pattern of nodes and antinodes.

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Snipaste_2021-02-17_10-43-23 (1).png

answered by: FairyLin
Add a comment
Know the answer?
Add Answer to:
A 32 cm long violin string is pulled tight with a force
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A violin string of length 43 cm and mass 1.1 g has a frequency of 495...

    A violin string of length 43 cm and mass 1.1 g has a frequency of 495 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string?   cm (b) What is the tension in the string?   N (c) Where should you place your finger to increase the frequency to 645 Hz?   cm from the fixed end of the string (from the peg of the violin)

  • A violin string of length 44 cm and mass 1.1 g has a frequency of 534...

    A violin string of length 44 cm and mass 1.1 g has a frequency of 534 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string? _______ cm (b) What is the tension in the string? _______N (c) Where should you place your finger to increase the frequency to 684 Hz? __________ cm from the fixed end of the string (from the peg of the violin)

  • A violin string of length 38 cm and mass 1.3 g has a frequency of 457...

    A violin string of length 38 cm and mass 1.3 g has a frequency of 457 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string? cm (b) What is the tension in the string? N (c) here should you place your finger to increase the frequency to 607 Hz? cm from the fixed end of the string (from the peg of the violin) eBook

  • A certain string is pulled taught between two supports, a distance L apart. When the string...

    A certain string is pulled taught between two supports, a distance L apart. When the string is driven at a frequency of 850 Hz a standing wave is observed with n anti-nodes. When the string is driven at 1190 Hz a standing wave is observed with n + 2 anti-nodes. a) What is the fundamental frequency of the set-up? b) What is the numerical value of n? c) The distance between the supports is kept fixed, as is the linear...

  • -. A metal wire is 0.400 m long and is under a Tension force of 75.0N....

    -. A metal wire is 0.400 m long and is under a Tension force of 75.0N. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • 4. A metal wire is 0.400 m long and is under a Tension force of 75.ON....

    4. A metal wire is 0.400 m long and is under a Tension force of 75.ON. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • Find the speed of the waves on an 800.0 mg violin string 23.0-cm long if the...

    Find the speed of the waves on an 800.0 mg violin string 23.0-cm long if the fundamental frequency is 902.0 Hz. Submit Answer Tries 0/99 What is the tension in the string? Submit Answer Tries 0/99 What is the wavelength of the waves on the string? Submit Answer Tries 0/99 What is the wavelength of the sound waves emitted by the string? Assume the speed of sound in air is 343.0 m/s Submit Answer Tries 0/99

  • Name: - Harmonics Worksheet Wave on a String One end of a string with a linear...

    Name: - Harmonics Worksheet Wave on a String One end of a string with a linear mass density of 1.45 . 10-2 kg/m is tied to a mechanical vibrator that can oscillate up and down. The other end hangs over a pulley 80 cm away. The mass hanging from the free end is 3 kg. The left end is oscillated up and down, which will create a standing wave pattern at certain frequencies. Draw the first five standing wave patterns...

  • For the first four resonant modes of a stretched string 100 CM long A. Draw the...

    For the first four resonant modes of a stretched string 100 CM long A. Draw the standing wave for each, and label the nodes N and the antinodes A. B. Label each mode by its harmonic number and its frequency relative to the fundamental frequency f1 of the string.

  • 2.) The 2nd harmonic of a violin string with a length of 32 cm (between the fixed ends) and density of 0.15 kg/m resonates with the third harmonic of a 2.0-m long organ pipe with one end closed an...

    2.) The 2nd harmonic of a violin string with a length of 32 cm (between the fixed ends) and density of 0.15 kg/m resonates with the third harmonic of a 2.0-m long organ pipe with one end closed and the other end open. (a) Draw a diagram for the problem, labelling the known and unknown variables. In your diagram, e standing waves for both the violin string and the organ pipe. For the organ pipe, graph the standing wave in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT