Question

5. A block of mass 23 kg moves up a 34° inclined plane by being pulled by a string attached to a hanging 45 kg mass across a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution: M: mass of hanging object mi- 23kg : ng sino 4. Coso 2 3 4 5 1 mg. cose a is acceleration. tension in string, Temaes cose I 9. I sino + (M +m) .a = a= mg - mg (siue + Micose) raam. Cos34) a = 45X9.b - 23x9.8( sinzy & 9.2 45+23 [a= 4:082 m/

Add a comment
Know the answer?
Add Answer to:
5. A block of mass 23 kg moves up a 34° inclined plane by being pulled...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass one 10.0 kg is placed on an inclined plane with slope angle...

    A block with mass one 10.0 kg is placed on an inclined plane with slope angle 20.0 degrees and is connected to a second hanging block that has mass two 14.0 kg by a cord passing over a small, frictionless pulley. The coefficient of kinetic friction between the inclined plane and the block is 0.35. What is the ACCELERATION of the block up the incline?

  • A block (block 5) of mass m5 = 2.3 kg hangs from the end of a...

    A block (block 5) of mass m5 = 2.3 kg hangs from the end of a (massless) string which runs over a (massless frictionless) pulley. The other end of the string is connected to another block (block 4) of mass m4 = 6.1 kg on a surface inclined at an angle of θ = 27o above the horizontal. The situation is shown below. a) Assuming there is no friction between block 4 and the inclined plane, find the acceleration (magnitude...

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

  • mi 13) A block with mass m = 5.00 kg is placed on an inclined plane...

    mi 13) A block with mass m = 5.00 kg is placed on an inclined plane with slope of a = 30.0° and is connected to a hanging block with mass m2 = 3.00 kg by a cord passing over a small, frictionless pulley as shown in the figure to the right. The coefficient of static friction is 0.333, and the coefficient of kinetic friction is 0.150. What is the magnitude and direction of the friction force on block mı?

  • } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00...

    } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00 is connected by a cord over a massless, frictionless pulley to a second block of mass m' = 2.60 kg. Calculate : (a) The magnitude of the acceleration of each block (b) The direction of the acceleration of the hanging block (c) The tension in the cord 4, mo (10 marks)

  • a block of mass m=6.5 kg on a frictionless plane inclined at 42 degrees is pulled...

    a block of mass m=6.5 kg on a frictionless plane inclined at 42 degrees is pulled up with constant force F. the block has a constant acceleration of 2.05 m/s^2. a) what magnitude force acted on the block? b) calculate the normal force acting on the block.

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • a statellite A block of mass 8 kg slides up a 30° inclined plane while a...

    a statellite A block of mass 8 kg slides up a 30° inclined plane while a cord connects it, over a small frictionless pulley, to a second block of mass 6 kg falling vertically. The coefficient of friction on the surface is 0.13. What is the magnitude of the acceleration of the system? b. What is the tension in the cord?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT