Question

mi 13) A block with mass m = 5.00 kg is placed on an inclined plane with slope of a = 30.0° and is connected to a hanging blo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Faom Pig T-m.9 0 miasing T-379.8 21.GN R5* 9.P C 3 30 =42.43N Y Consialen Hhe f dean aord feree Masindt f deron For F-MR=Ms 2

Add a comment
Know the answer?
Add Answer to:
mi 13) A block with mass m = 5.00 kg is placed on an inclined plane...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass one 10.0 kg is placed on an inclined plane with slope angle...

    A block with mass one 10.0 kg is placed on an inclined plane with slope angle 20.0 degrees and is connected to a second hanging block that has mass two 14.0 kg by a cord passing over a small, frictionless pulley. The coefficient of kinetic friction between the inclined plane and the block is 0.35. What is the ACCELERATION of the block up the incline?

  • A block weighing 100 N is placed on an inclined plane of slope angle 30, and...

    A block weighing 100 N is placed on an inclined plane of slope angle 30, and is connected to a second hanging mass of mass m by a cord passing over a small, frictionless pulley. The maximum force of static friction between block and slope is 26.0 N. a. Find the maximum mass m for which the 100 N block is at rest. b. find the minimum mass m for which the 100 N block is at rest. 11,A block...

  • A block of mass m1 is placed on an inclined plane with slope angle ? and...

    A block of mass m1 is placed on an inclined plane with slope angle ? and is connected to a second hanging block m2 by means of an ideal string and pulley as shown. The coefficient of kinetic friction is is ?k . Draw free body diagrams (include all forces, formulas and: a) Find the mass m2 such that m1 moves up the plane at constant velocity once in motion. b) Now find the mass m2 such that m1 moves...

  • } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00...

    } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00 is connected by a cord over a massless, frictionless pulley to a second block of mass m' = 2.60 kg. Calculate : (a) The magnitude of the acceleration of each block (b) The direction of the acceleration of the hanging block (c) The tension in the cord 4, mo (10 marks)

  • 27 only (26) A block of mass mi located on a horizontal frictionless surface is connected...

    27 only (26) A block of mass mi located on a horizontal frictionless surface is connected by a light non-stretchable cord that passes over a massless frictionless pulley to a second block of mass m2, which is allowed to move on an inclined friction- less plane of angle e, as shown in Fig. 5.37. Find the acceleration of the two blocks and the tension in the cord when mı = 2 kg, m2 =6 kg, sin 0 =4/5, and cos...

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg ,...

    Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.500m/s2 is observed for block 2. -Find the mass of block 2, m2.?

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT