Question

Image for An object of mass m1 hangs from a string that passes over a very light fixed pulley P1 as shown in the figure

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

here

Now this is a slightly subtle point, but the forces on the pulley must add to zero because the pulley is assumed to be massless . (A net force on it would give it an infinite acceleration!) This condition gives us:

T1 - 2 * T2 = 0........................(1)

newtons second law gives us

m1 * g - T1 = m1 * a1.....................(2)

then we get

a2 = 2 * a1 ........................(3)

b)

T2 = m2 * a2

a2 = 2 * a1

form these equations we get

T2 = 2 * m2 * a2

then putting this into equation (1) we get

T1 - 2 * T2 = T1 - 4 * m2 * a1 = 0

T1 = 4 * m2 * a1

then by using this in the equation 2

m1 * g - 4 * m2 * a1 = m1 * a1

at which point we can solve for a1

m1 *g = a1( 4 * m2 + m1)

a1 = m1 * g / (4*m2 + m1)

from the equation 3 we get

a2 = 2 *a1 = 2*m1 * g / (4*m2 + m1)

then

T2 = m2 * a2

T2 = 2*m1 * m2 * g / ( 4 * m2 + m1)

form the (1) equation T1 = 2 * T2

T1 = 4 * m1 *m2 *g / (4*m2 + m1)

C)

a1 = m1 * g / ( 4* m2 + m1)

a2 = 2*m2 * g /(4*m2 + m1)

Add a comment
Know the answer?
Add Answer to:
An object of mass m1 hangs from a string that passes over a very light fixed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 0.100 m Problem 5 A Pi as shown below. The around this pulley with one end...

    0.100 m Problem 5 A Pi as shown below. The around this pulley with one end attached to a wall and the other to an object of mass m2 on a frictionless and horizontal table. (a) If ai and a2 are the accelerations of mi and m2, respectively what is the relation between these two accelerations? (b) Find an expression for the tensions in the strings in terms of the masses m; and m2 (c) Find the accelerations ai and...

  • Mass m1 is connected by a light string that passes over a pulley of mass m...

    Mass m1 is connected by a light string that passes over a pulley of mass m to a mass m2. ... Question: A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both m... A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2. Both masses move virticaly and there is no slippage between the string and the...

  • Solve problem, show steps.

    An object of mass m1 hangs a string that passes over a very light fixed pulley P1 as shown. The string connects to a second very light pulley P2. A second string passes around this pulley with one end attached to a wall and the other to an object of mass m2 on a frictionless, horizontal table. Find the expression for the tensions in the string .

  • An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass

    An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass m2 = 3.00 kg on a frictionless surface (see figure). The pulley rotates about a frictionless axle and has a moment of inertia of 0.570 kg · m² and a radius of 0.310 m. Assume that the cord does not slip on the pulley. (a) Find the acceleration of the two masses. m/s2 (b) Find the tensions T1 and T2

  • Mass m1 = 4.50−kg is connected to mass m2 = 4.55−kg by a string that passes...

    Mass m1 = 4.50−kg is connected to mass m2 = 4.55−kg by a string that passes through a massless and frictionless pulley. Mass m2 is connected to mass m3 = 3.00−kg by a string. Find the tension in the strings. T1 = N T2 = N TA T. m, m1 T2 N m

  • Problem 5 (15 points) A small bead can slide without friction on a circular hoop that...

    Problem 5 (15 points) A small bead can slide without friction on a circular hoop that is a vertical plane and has a radius of 0.100 m. The hoop rotates at a constant rate of 4.00 rev/sec (recall 1 rev = 2π rad) about a vertical diameter as shown in the figure below (a) Find the angle β at which the bead is in vertical equilibrium. (It has a radial acceleration toward the axis.) (b) Is it possible for the...

  • An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light

    An Atwood machine consists of two masses m1 and m2 (with m1 > m2) attached to the ends of a light string that passes over a light, frictionless pulley. When the masses are released, the mass m1 is easily shown to accelerate down with an accelerationSuppose that m1 and m2 are measured as m1=100±1 gram and m2=50±1 gram. Derive a formula of the uncertainty in the expected acceleration in terms of the masses and their uncertainties, and then calculate δα for...

  • A mass m1 = 5.50 kg is connected by a light string that passes over a...

    A mass m1 = 5.50 kg is connected by a light string that passes over a pulley of mass M = 11.5 kg to a mass m2 = 11.5 kg sliding on a horizontal surface (see figure). The coefficient of kinetic friction between the mass m2 and the surface is 0.17. There is no slippage between the string and the pulley. What is the magnitude of the tension that is acting on mass m1? (The moment of inertia of the...

  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the tension in the string...

  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the acceleration of m1?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT