Question

In the figure, the rigid member ABDE is supported at A by a single shear pin connection and at B by a tie rod (1). The tie rod is attached at B and C with double shear pin connections. The pins at A, B, and C each have an ultimate shear strength of 84 ksi, and tie rod (1) has a yield strength of 63 ksi. A concentrated load of P = 20 kips is applied perpendicular to DE, as shown. A factor of safety of 1.6 is required for all components. Assume c = 6 ft, a = 10 ft, b = 3 ft, d = 8 ft, and θ = 17o.

Determine

(a) the minimum required diameter for the tie rod.
(b) the minimum required diameter for the pin at B.
(c) the minimum required diameter for the pin at A.

In the figure, the rigid member ABDE is supported at A by a single shear pin connection and at B by a tie rod (1). The tie ro

0 0
Add a comment Improve this question Transcribed image text
Answer #1

schulios? - tendz to 2 59038 Equations & Equilibrium 8401 EFNEO Peop 73 - Fico 159-03 tanzoo loft Efyro - p8n73 -Fi son 59.03Resultant pin Force at a Az Antalya 2) 17.7402468-ces) A-61.066 Lilly (as Alauble Normal strees for tie rod Jalous 2 >34.015.(C. The pin at A is a single shead contention Auz Apn Povze ten Gute 21:1012 dzy lehetne) = 1.169 TATO dem= 1.2169m

Add a comment
Know the answer?
Add Answer to:
In the figure, the rigid member ABDE is supported at A by a single shear pin...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter 4, Reserve Problem 026 In the figure, the rigid member ABDE is supported at A...

    Chapter 4, Reserve Problem 026 In the figure, the rigid member ABDE is supported at A by a single shear pin connection and at B by a tie rod (1). The tie rod is attached at B and C with double shear pin connections. The pins at A, B, and C each have an ultimate shear strength of 77 ksi, and tie rod (1) has a yield strength of 61 ksi. A concentrated load of P = 30 kips is...

  • Beam AB is supported as shown in the figure. Tie rod (1) is attached at B...

    Beam AB is supported as shown in the figure. Tie rod (1) is attached at B and C with double shear pin connections, while the pin at A is attached with a single shear connection. The pins at A, B, and C each have an ultimate shear strength of 52 ksi, and tie rod (1) has a yield strength of 30 ksi. A concentrated load of P 26 kips the beam as shown. A factor safety of 2.5 required for...

  • The rigid structure ABD issupported at B by a 36-mm-diameter tie rod (1) and at...

    The rigid structure ABD is supported at B by a 36-mm-diameter tie rod (1) and at A by a 29-mm-diameter pin used in a single shear connection. The tie rod is connected at B and C by 24-mm-diameter pins used in double shear connections. Tie rod (1) has a yield strength of 260 MPa, and each of the pins has an ultimate shear strength of 320 MPa. A concentrated load of P = 50 kN acts as shown at D....

  • Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of...

    Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of 58 mm ,and it is attached at B and Cwith 24 mm diameter double-shear pin connections. The pin connection at A consists of a 40 mm diameter single-shear pin. The pins at A, B, and C each have an ultimate shear strength of 500 MPа ,and tie rod (1) has a yield strength of 280 МРPа . A uniformly distributed load of W is...

  • Beam AB is supported as shown in the figure. Tie rod(1) has a diameter of...

    Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of 60 mm, and it is attached at B and C with 24 mm diameter double-shear pin connections. The pin connection at A consists of a 37 mm diameter single-shear pin. The pins at A, B, and C each have an ultimate shear strength of 500 MPa, and tie rod (1) has a yield strength of 280 MPa. A uniformly distributed load of w is applied to...

  • Rigid bar ABC is supported by a pin at bracket A and by tie rod (1). Tie rod (1) has a diameter of 9 mm, and it is supported by double-shear pin connections at B and D. The pin at bracket A is a single-shear connection. The pin at B is 7 mm in diameter. A

    Rigid bar \(A B C\) is supported by a pin at bracket \(A\) and by tie rod (1) . Tie rod (1) has a diameter of \(9 \mathrm{~mm}\), and it is supported by double-shear pin connections at \(B\) and \(D .\) The pin at bracket \(A\) is a single-shear connection. The pin at \(B\) is \(7 \mathrm{~mm}\) in diameter. Assume \(a=520 \mathrm{~mm}, b=260 \mathrm{~mm}, h=390 \mathrm{~mm},\) and \(\theta=50^{\circ} .\) If the normal stress in tie rod (1) cannot exceed 200...

  • A concentrated load of P = 62 kips is applied to beam AB, as shown in...

    A concentrated load of P = 62 kips is applied to beam AB, as shown in the figure. Rod (1) has a diameter of 1.7 in., and its yield strength is 31 ksi. Pin A is supported in a double shear connection, and the ultimate shear strength of pin A is 77 ksi. Assume a=4.6 ft, b=7.1 ft, C=8.3 ft, d=11 in. (a) Determine the normal stress in rod (1). (b) Determine the factor of safety with respect to the...

  • Problem 4 (3pts) The beam AB is supported by a single-shear pin connection at joint A...

    Problem 4 (3pts) The beam AB is supported by a single-shear pin connection at joint A and by a double-shear connection to member (1) at joint B. Member (1) is connected to the support at C with a double-shear pin connection. Member (1) has a cross-sectional area of 100 mm and a yield strength of 340 MPa. The pins at A, B, and C each have a diameter of 12 mm, and an ultimate shear strength of 270 MPa. Specifications...

  • I believe D is a double Shear and B is single shear Rigid beam ABC is...

    I believe D is a double Shear and B is single shear Rigid beam ABC is supported by a pin support at A and axial member (1). Member (1) is connected by two different pin conditions as shown in the figure and it has a diameter of 3". Each pin has a diameter of 1.5 a) Calculate the internal force in member (1) in kips and clearly indicate Tension (T) or 2) Compression (C). [Ans. to Check: 62.5 k b)...

  • Rigid bar is supported by a pin-connected axial bar (1) and a pin connection at C...

    Rigid bar is supported by a pin-connected axial bar (1) and a pin connection at C as shown in Figure Q1. Member (1) is a 20 mm wide by 9 mm thick rectangular bar made of Steel Alloys (A992). The total strain in bar (1) is measured as 925 ue (925x10°). The pin at C has an ultimate shear strength of ty = 345MPa. Determine: (a) The axial force in member (1). [9 marks] (b) The factor of safety in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT