Question

K = 75 for the reaction H2(g) + I2(g) 2 HI(g) Initially there are 4.5 moles...

K = 75 for the reaction

H2(g) + I2(g) 2 HI(g)

Initially there are 4.5 moles of H2 and 3.2 moles of I2 in a 1.00 L container. After 2 hours there is still 1.00 moles of I2 left. Is the system at equilibrium? If not, which reaction is favoured and which concentrations are increasing or decreasing?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

CTnih ナ27 3 2- Thi constontis csn eceing

Add a comment
Know the answer?
Add Answer to:
K = 75 for the reaction H2(g) + I2(g) 2 HI(g) Initially there are 4.5 moles...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the following reaction: 2 HI(g) H2(g) + I2(g) If 2.29 moles of HI, 0.309 moles...

    Consider the following reaction: 2 HI(g) H2(g) + I2(g) If 2.29 moles of HI, 0.309 moles of H2, and 0.363 moles of I2 are at equilibrium in a 17.8 L container at 774 K, the value of the equilibrium constant, Kp, is

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) 2HI(g) Calculate the equilibrium concentrations of reactants and product when 0.293 moles of H2 and 0.293 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M [I2] = M [HI] = M

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) 2HI(g) Calculate the equilibrium concentrations of reactants and product when 0.276 moles of H2 and 0.276 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = _____M [I2] =______M [HI] =______M

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) ---------->2HI(g) 1) Calculate the equilibrium concentrations of reactants and product when 0.309 moles of H2 and 0.309 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M? [I2] = M? [HI] = M? 2.The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K: PCl5(g)------->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a...

  • The equilibrium constant for the reaction: H2(g) + I2(g) <--> 2HI(g) is 54 at 700 K....

    The equilibrium constant for the reaction: H2(g) + I2(g) <--> 2HI(g) is 54 at 700 K. A mixture of H2, I2 and HI, each at 0.020 M, was introduced into a container at 700 K. Which of the following is true? At equilibrium, [H2] = [I2] = [HI]. No net change occurs because the system is at equilibrium. The reaction proceeds to the left producing more H2(g) and I2(g). The reaction proceeds to the right producing more HI(g). At equilibrium,...

  • 24. The reaction: H2 (g) + I2 (g) <--> 2 HI (g) has a Keq =...

    24. The reaction: H2 (g) + I2 (g) <--> 2 HI (g) has a Keq = 20.0 If the initial concentrations give a value less than 20, we can say: a. the reaction will move to the reagents to reach equilibrium b. by increasing the volume of the reaction container, the system will reach equilibrium c. reducing the volume causes the reaction to reach equilibrium d. the reaction will move towards the products to reach equilibrium

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) +...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) ---> 2 HI (g) Calculate the equilibrium concentrations of reactants and product when 0.301 moles of H2 and 0.301 moles of I2 are introduced into a 1.00 L vessel at 698 K. [ H2 ]   = _______ M [ I2 ]   = ________ M [ HI ]   = _______ M

  • At a particular temperature, K = 7.40 × 102 for the reaction H2 (g) + 12...

    At a particular temperature, K = 7.40 × 102 for the reaction H2 (g) + 12 (g) 늑 2H1(g) In an experiment, 3.30 moles of H2, 3.30 moles of I2, and 3.30 moles of HI are introduced into a 1.00-L container Calculate the concentrations of all species when equilibrium is reached Concentration of H2 = Concentration of - Concentration ofHi-M

  • A student ran the following reaction in the laboratory at 647 K: 2HI(g) H2(g) + I2(g)...

    A student ran the following reaction in the laboratory at 647 K: 2HI(g) H2(g) + I2(g) When she introduced 0.395 moles of HI(g) into a 1.00 liter container, she found the equilibrium concentration of I2(g) to be 3.95×10-2 M. Calculate the equilibrium constant, Kc, she obtained for this reaction.

  • Consider the following reaction where Kc = 55.6 at 698 K: H2(g) + I2(g) <------>2HI(g) A...

    Consider the following reaction where Kc = 55.6 at 698 K: H2(g) + I2(g) <------>2HI(g) A reaction mixture was found to contain 4.14×10-2 moles of H2(g), 3.91×10-2 moles of I2(g) and 0.258 moles of HI(g), in a 1.00 Liter container. Indicate True (T) or False (F)for each of the following: ___TF 1. In order to reach equilibrium HI(g) must be consumed. ___TF 2. In order to reach equilibrium Kc must decrease. ___TF 3. In order to reach equilibrium H2 must...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT