Question

4. A heat engine contains an ideal monatomic gas confined to a cylinder by a movable piston. The gas starts at point A shown

0 0
Add a comment Improve this question Transcribed image text
Answer #1

9 write the ideal gas equation. . Lip VonRTs I at point A, PAVA=ARTA = PAVA Put, PA=1, atm VA = 5:02,TA=300k (from graph) RTAmal WE PDV =O ( AVE coustant) e since the per temprature remains constant, therefore the frous as isothermal a (at=o) (Woc l

Add a comment
Know the answer?
Add Answer to:
4. A heat engine contains an ideal monatomic gas confined to a cylinder by a movable...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Example: A heat engine contains an ideal gas confined to a cylinder by a movable piston....

    Example: A heat engine contains an ideal gas confined to a cylinder by a movable piston. The gas starts at A, where T-300K B to C is an isothermal T expansion. (a) Find the number of moles (n) of gas (b) Find the temperature at B (c) Find AU, Q and W for the process A to B P(atm) WL) 15 10

  • 400 moles of an ideal monatomic gas are kept in a cylinder fitted with a light...

    400 moles of an ideal monatomic gas are kept in a cylinder fitted with a light frictionless piston. The gas is maintained at the atmospheric pressure. Heat is added to the gas. The gas consequently expands slowly from an initial volume of 10 m3 to 15 m3. (a) Draw a P-V diagram for this process. (b) Is this thermodynamic process an isothermal expansion, an isobaric expansion or an adiabatic expansion? (c) Calculate the work done by the gas. (d) Calculate...

  • A cylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a...

    A cylinder with a movable piston contains 11.7 moles of a monatomic ideal gas at a pressure of 1.32 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 43200 J of energy into the gas while the piston moves in such a way that the pressure remains constant. It may help you to recall that CP C P = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas...

  • A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a...

    A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a pressure of 1.66 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 46600 J of energy into the gas while the piston moves in such a way that the pressure remains constant. It may help you to recall that CPCP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is...

  • An ideal monatomic gas is contained in a cylinder with a movable piston so that the gas can do work on the outside worl...

    An ideal monatomic gas is contained in a cylinder with a movable piston so that the gas can do work on the outside world, and heat can be added or removed as necessary. The figure shows various paths that the gas might take in expanding from an initial state whose pressure, volume, and temperature are , , and respectively. The gas expands to a state with final volume . For some answers it will be convenient to generalize your results...

  • Part A:Refer to diagram 2. A flask contains 85.2 moles of a monatomic ideal gas at...

    Part A:Refer to diagram 2. A flask contains 85.2 moles of a monatomic ideal gas at pressure 6.9 atm and volume 13.4 liters (point A on the graph. Now, the gas undergoes a cycle of three steps: - First there is an isothermal expansion to pressure 3.65 atm (point B on the graph). - Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph). - Finally, there is an isobaric compression...

  • A Piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the...

    A Piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the p-V diagram below. The gas is initially at room temperature (300 K). Determine the total work done by the gas, and the total heat flow into the gas after completing one cycle. What is the thermal efficiency of this engine? Problem Statement A piston-cylinder heat engine containing a monatomic ideal gas undergoes the three processes drawn on the p-V diagram below. The gas is...

  • A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an...

    A monatomic ideal gas initially fills a container of volume V = 0.15 m3 at an initial pressure of P = 360 kPa and temperature T = 275 K. The gas undergoes an isobaric expansion to V2 = 0.55 m3 and then an isovolumetric heating to P2 = 680 kPa. a) Calculate the number of moles, n, contained in this ideal gas. b) Calculate the temperature of the gas, in kelvins, after it undergoes the isobaric expansion. c) Calculate the...

  • Part A A heat engine with 0.500 mol of a monatomic ideal gas initially fills a...

    Part A A heat engine with 0.500 mol of a monatomic ideal gas initially fills a 3000 cm3 cylinder at 600 K The gas goes through the following closed cycle: - Isothermal expansion to 4000 cm How much work does this engine do per cycle? Express your answer with the appropriate units 3 239 J sochoric cooling to 400 K Isothermal compression to 3000 cm3 Isochoric heating to 600 K rev Vious Answers Answer Requested Part B What is its...

  • Ten. moles of ideal gas (monatomic), in the initial state P1=10atm, T1=300K are taken round the...

    Ten. moles of ideal gas (monatomic), in the initial state P1=10atm, T1=300K are taken round the following cycle: a. A reversible isothermal expansion to V=246 liters, and b. A reversible adiabatic process to P=10 atm c. A reversible isobaric compression to V=24.6 liters Calculate the change of work (w), heat (q), internal energy (U), and entropy (S) of the system for each process?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT