Question

physic3. 2 moles of an ideal gas at 17°C has a pressure of 760mm mercury, and is compressed once isothermally and then adiabaticall(d) What is the work done on the gas careful with the sign)? W = (e) What is heat leaving the system(careful with the sign)?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ns2 T-17°C2734175 290k P = 7.60mm Mercury : 100 13x105 Pa Do Jalmis isolhearyal Temperature constant as Pů = 1.013xios Pa (6)Now By for isoluermal process au=0 hol law of luemo dynamics До - до 4 дю AQ - AWF- 3342.44 3 Aus CONSIDERING ADIABETIC PROCE- Comt PV=nRT [ideal gars] V-net - P.InRTY - Const pop pop cornet - Cono 0 ) 1 Ti: 17° +17+273 52901, * -(0) 20 O13x10 322 (23 h Adiabetic means AQ = 0 By Jat law gj you modynamics 016 conomice AQ - Autaw 4W = -AU = - nCWAT cv for = -2.3R ( 45 ) ESR

Add a comment
Know the answer?
Add Answer to:
physic 3. 2 moles of an ideal gas at 17°C has a pressure of 760mm mercury,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Part A:See diagram 4. 51.4 moles of a diatomic ideal gas undergo three steps: A to...

    Part A:See diagram 4. 51.4 moles of a diatomic ideal gas undergo three steps: A to B is an isobaric (constant pressure P1 = 5.64x106 Pascal) expansion from volume V1 = 0.0854 m3 to V2 = 0.979 m3. B to C is isochoric (constant volume) C to A is isothermal (constant T). Find PC, the pressure at point C, in Pascals. Express in scientific notation. Part B:See diagram 4. 21.6 moles of a diatomic ideal gas undergo three steps: A...

  • Vol calculate mol sample of an ideal gas expands reversibly and isothermally to a final OL...

    Vol calculate mol sample of an ideal gas expands reversibly and isothermally to a final OL If the initial pressure is 7.0 am and the temperature is 57.0°C (a) the initial volume of the gas (b) the final pressure of the gas (c) the work done in kJ (5) A 2 50 mol sample of an ideal monoatomic gas at 300K expands adiabatically and reversibly from a volume of 15.0 L to 60.0L Calculate the (a) final temperature of the...

  • A monatomic ideal gas that is initially at a pressure of 1.54 times 10^5 Pa and...

    A monatomic ideal gas that is initially at a pressure of 1.54 times 10^5 Pa and with a volume of 8.00 times 10^-2 m^3 is compressed adiabatically to a volume of 3.90 times 10^-2 m^3. What is the final pressure? P = ______ Pa How much work is done by the gas during the compression? W = ________ J What is the ratio of the final temperature of the gas to its initial temperature?

  • An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand...

    An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the expansion is isothermal, what are thefinal pressure pfi and the work Wi done by the gas? If, instead, the expansion is adiabatic, what are the final pressure pfa and the work Wa done by the gas? Stateyour answers in terms of the given variables.

  • a 2 mol sample of diatomic ideal gas is expaning slowly and adiabatically from a pressure...

    a 2 mol sample of diatomic ideal gas is expaning slowly and adiabatically from a pressure eof 5.05 ATM and a volume if 13 literally to a final volume of 29.4 liters. what is the pressure? what is the initial and final temperatures? what is q for gas during this process? what is the change in E int of the gas drluring the process? what is the W on the gas during the process

  • A 2.00 mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure...

    A 2.00 mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of L2 Lto a final volume of 30.8 L (a) What is the final pressure of the gas? 1.44 atm (b) What are the initial and final temperatures? initial 385.72 final 269.39 (c) Find Qfor the gas during this process. 0 (d) Find ??¡nt for the gas during this process. What is the relationship between the internal energy...

  • Suppose that we allow 3.50 mol of an ideal gas with Cv=5R/2 to expand isothermally and...

    Suppose that we allow 3.50 mol of an ideal gas with Cv=5R/2 to expand isothermally and reversibly from 100 atm, 10 L to 10.0 atm and then the gas is allowed to expand adiabatically and reversibly to a final pressure of 1.00 atm. Calculate q, w, ΔU and ΔH for each step and the total values for the two steps. Suppose now that the processes are carried out irreversibly with pressure dropping discontinuously from 100 atm to 10.0 atm in...

  • An ideal monatomic gas initially has a temperature of 267 K and a pressure of 6.14...

    An ideal monatomic gas initially has a temperature of 267 K and a pressure of 6.14 atm. It is to expand from volume 488 cm3 to volume 1610 cm3. If the expansion is isothermal, what are (a) the final pressure and (b) the work done by the gas? If, instead, the expansion is adiabatic, what are (c) the final pressure and (d) the work done by the gas?

  • Part D please An ideal monatomic gas initially has temperature Ti and pressure pi. It is...

    Part D please An ideal monatomic gas initially has temperature Ti and pressure pi. It is to expand from volume V to volume Vf. (Use any variable or symbol stated above as necessary.) (a) If the expansion is isothermal, what is the final pressure? (b) If the expansion is isothermal, what is the work done by the gas? 42) 1219 (c) If, instead, the expansion is adiabatic, what is the final pressure? (d) If the expansion is adiabatic, what is...

  • Five moles of nitrogen gas is expanded in a piston-cylinder assembly from an initial state of...

    Five moles of nitrogen gas is expanded in a piston-cylinder assembly from an initial state of 3 bar and 88 ºC to a final pressure of 1 bar. You can assume nitrogen to behave as an ideal gas with a constant heat capacity CP =7R/2. a) If the expansion is carried out isothermally and reversibly, calculate Q, W, ΔH and ΔU. Draw the process on a pV diagram. Label the axis and the path clearly. b) If the expansion is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT