Question

8.64 For the ideal-gas turbine with regenerator shown in Fig. 8-27 find Wout and the back work ratio.

media%2Ff8e%2Ff8e9bc6d-f99d-423d-b98d-d9

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answei ch ven Assum ova寸 e tmp nar D) IdialWork done by T ibin no br て 404422 . TS Woik done byTuubineWo1k done b ness)br) C. 1S90-23 68e-b23 15 10-23 2

Add a comment
Know the answer?
Add Answer to:
8.64 For the ideal-gas turbine with regenerator shown in Fig. 8-27 find Wout and the back...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • II. In a gas turbine installation, shown in the Regenerator Fuel opposite figure, air is supplied...

    II. In a gas turbine installation, shown in the Regenerator Fuel opposite figure, air is supplied at Pi of 1 bar and temperature Ti of 27 C intoa compressor which has a pressure ration t of 8. The air leaving the combustion chamber is heated up to a temperature T4 of 827 °C and expanded in a turbine up to a pressure Ps of 1 bar. A regenerator with an effectiveness ε of80 % is fitted at the turbine exit...

  • 5. Similar to 9-127 A gas turbine operates with a regenerator and two stages of reheating...

    5. Similar to 9-127 A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 50°F, the pressure ratio for each stage of compression is 2.7, the air temperature when entering a turbine is 940°F, and the regenerator operates perfectly. Determine the mass flow rate of the air passing through this engine and the rates of heat addition and rejection when this engine produces 1040 hp. Assume isentropic operations...

  • Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12...

    Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12 and a mass flow rate of 5.0 kg/s. Air enters the compressor at 1 bar, 290 K. The maximum cycle temperature is 1600 K. For the compressor, the isentropic efficiency is 85%, and for the turbine the isentropic efficiency is 90%. Using an air-standard analysis with air as ideal gas with constant specific heats, calculate: a) the volumetric flow rate of air entering the...

  • Air is the working fluid in a gas-turbine power system which rotates an electric generator. The...

    Air is the working fluid in a gas-turbine power system which rotates an electric generator. The system includes a compressor, a two-stage turbine and a regenerator. Air enters a compressor with a compression ratio of 16 at 14 lbf/in2 and 70°F. For each stage of the turbine, compression ratio is 8 and temperature of air entering is 2000°F. The reported isentropic efficiency for each turbine and the compressor is 85%. Regeneration system is 70% efficient. Considering specific heat capacities varying...

  • a,b,c Air enters the compressor of a gas turbine at 1 bar, 20°C with a volumetric...

    a,b,c Air enters the compressor of a gas turbine at 1 bar, 20°C with a volumetric flow ies of 90%. The plant incorporates a regeneraar of 75% effectiveness. determine: s. The pressure ratio across the compressor is 10. The turbine inlet is 1427°C and the turbine and compressor each have isentropic temperatu Using the air-standard Brayton cycle as the model for this system. a.) b) c.) the net work output, MW the back work ratio the cycle's thermal efficiency pthe...

  • Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle) 9-105 A gas turbine for...

    Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle) 9-105 A gas turbine for an automobile is designed with a regenerator. Air enters the compressor of this engine at 100 kPa and 30°C. The compressor pressure ratio is 8; the maximum cycle temperature is 800°C; and the cold airstream leaves the regenerator 10°C cooler than the hot airstream at the inlet of the regenerator. Assuming both the compressor and the tur- bine to be isentropic, determine the rates...

  • Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures...

    Pressure ratio of a Brayton cycle with air operated regenerator 8. The lowest and highest temperatures of the cycle are 310 K and 1150 K. Adiabatic efficiency of compressor and turbine 75% and 82%, respectively. the efficiency of the regenerator is 65%. The cycle in the T-s diagram Show. Consider the variation of specific temperatures with temperature. a) the temperature of the air at the turbine outlet, b) Net work of the cycle, c) Calculate the thermal efficiency of the...

  • An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there...

    An ideal Brayton cycle with regeneration is shown below. Note that from 1 to 6, there is a heat rejection process. The pressure ratio is 10 and the inlet to the compressor is at 300 K and 100 kPa. The maximum temperature is 1100 K. Use air as the working fluid, and assume constant properties evaluated at 300 K.   (a) Find the net work output and the cycle efficiency assuming the effectiveness of the regenerator is 100% (b) Plot the...

  • 4. A regenerative two-stage gas turbine with reheat operating on the standard-air Brayton cycle i...

    4. A regenerative two-stage gas turbine with reheat operating on the standard-air Brayton cycle is illustrated in Figure 3. In an ideal Brayton cycle, the processes in the turbines and compressor are adiabatic and isentropic, and the air flows through the combustor and heat exchangers at constant pressure.    a) Show that the maximum total work output is developed when the pressure ratio is the same across each stage, if the temperature at the inlet to each turbine stage is the...

  • Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit...

    Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit operates on the regenerative Brayton Cycle between the pressure limits of 100 kPa and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by hot combustion gases leaving the turbine. Diesel fuel with heating value of 42,000 kJ/kg is burned in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT