Question
Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle)
9-105 A gas turbine for an automobile is designed with a regenerator. Air enters the compressor of this engine at 100 kPa and
0 0
Add a comment Improve this question Transcribed image text
Answer #1

A Given daila opressure at inlet of compressor Pi = 100kpa Temperature at inlet of compressor = Ti = 30 +2.43 -3034 Hind Tena(3)in. , Real 10031K Nexshoia molt 0.90 107) - T5 1073 - Bike 59 2.49 15 - Albania 640.541 K. IC Enorgy balance - To - Taa T

Add a comment
Know the answer?
Add Answer to:
Problem 9.106 using varaiable specific heat assumption (Non-Ideal Regenerative Brayton Cycle) 9-105 A gas turbine for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Heat exchanger 5 Comb. Compressor Turbine A gas turbine for an automobile is designed with a...

    Heat exchanger 5 Comb. Compressor Turbine A gas turbine for an automobile is designed with a regenerator. Air enters the compressor of this engine at 100 kPa and 20°C. The compressor pressure ratio is 7.8; the maximum cycle temperature is 865°C; and the cold air stream leaves the regenerator 10°C cooler than the hot air stream at the inlet of the regenerator. Assuming both the compressor and the turbine to be isentropic, determine the rates of heat addition and rejection...

  • 4. A regenerative two-stage gas turbine with reheat operating on the standard-air Brayton cycle i...

    4. A regenerative two-stage gas turbine with reheat operating on the standard-air Brayton cycle is illustrated in Figure 3. In an ideal Brayton cycle, the processes in the turbines and compressor are adiabatic and isentropic, and the air flows through the combustor and heat exchangers at constant pressure.    a) Show that the maximum total work output is developed when the pressure ratio is the same across each stage, if the temperature at the inlet to each turbine stage is the...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 100 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 2100 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of...

    Air enters the compressor of a regenerative air-standard Brayton cycle with a volumetric flow rate of 20 m3/s at 0.8 bar, 280 K. The compressor pressure ratio is 20, and the maximum cycle temperature is 1950 K. For the compressor, the isentropic efficiency is 92% and for the turbine the isentropic efficiency is 95%. For a regenerator effectiveness of 86%, determine: (a) the net power developed, in MW. (b) the rate of heat addition in the combustor, in MW. (c)...

  • 1. A regenerative Brayton cycle operates over a pressure ratio of 8. The minimum and maximum...

    1. A regenerative Brayton cycle operates over a pressure ratio of 8. The minimum and maximum temperatures in the cycle are 310 K and 1150 K, respectively. Assume an isentropic compressor efficiency of 75%, an isentropic turbine efficiency of 82%, and a regenerator effectiveness of 0.65. Using constant properties (Cp - 1.005 kJ/kgK, k = 1.4), determine: a) The T-s diagram for all processes including the isentropic processes b) The air temperature at the turbine exit c) The specific network...

  • Do problem 9.128E using variable specific heat assumptions instead of constant. Please don't use constant specific...

    Do problem 9.128E using variable specific heat assumptions instead of constant. Please don't use constant specific heat assumption Solution 9.128E Problem Statement Reconsider Prob. 9–127E. Determine the change in the rate of heat addition to the cycle when the isentropic efficiency of each compressor is 88 percent and that of each turbine is 93 percent. Problem 9.127E A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60°F;...

  • 2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100...

    2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80%and the air enters the turbine at 1400 K. For a turbine isentropic efficiency of 90%, , then: (a) Sketch the T-s diagram of the cycle. (b) Determine the amount of heat transfer in the regenerator (c) Calculate the thermal efficiency of the cycle (d) Determine the...

  • An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air...

    An air-standard Brayton cycle includes a regenerator which is shown in the below figure. The air enters the compressor at 100 kPa, 20℃. The pressure ratio across the compressor is 9:1. The highest temperature in the cycle is 1100℃, and the flow rate of the air is 10 kg/s. The regenerator operates at effectiveness 80 percent. Both the efficiencies of the turbine and the compressor are 85%. Do not use Table A-22. Assuming constant specific heat ( cp = 1.004...

  • Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12...

    Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12 and a mass flow rate of 5.0 kg/s. Air enters the compressor at 1 bar, 290 K. The maximum cycle temperature is 1600 K. For the compressor, the isentropic efficiency is 85%, and for the turbine the isentropic efficiency is 90%. Using an air-standard analysis with air as ideal gas with constant specific heats, calculate: a) the volumetric flow rate of air entering the...

  • Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the...

    Help Save & Exit Submit Required information A Brayton cycle with regeneration using air as the working fluid has minimum and maximum temperatures in the cycle are 310 and 1150 K. Assume an isentropic efficiency of 75 percent for the compressor and 82 percent for the turbine and an effectiveness of 68 percent for the regenerator. Use variable specific heats for air a pressure ratio of 7. The Determine the air temperature at the turbine exit. (You must provide an...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT