Question

A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions...

A 1500 hp gas turbine is used to power a helicopter shaft.

For the following conditions

Air inlet temperature of 27 C
Compressor exit temperature of 320 C
Combustor exit temperature of 1000 C
Exhaust gas temperature of 550 C
Inlet Pressure of 100 kPa
Combustor Pressure of 800 kPa

Using the Cold Air Standard Assumptions. Calculate the thermal efficiency of the gas turbine (in percent).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

3 = 27°C T Tz 2 320c 1000 c Tag 550C = This - 62-6-6) a, T3 Net work Turbine work Compressor work alret s assumed constant ot

Add a comment
Know the answer?
Add Answer to:
A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions...

    A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions Air inlet temperature of 27 C Compressor exit temperature of 320 C Combustor exit temperature of 1000 C Exhaust gas temperature of 550 C Inlet Pressure of 100 kPa Combustor Pressure of 800 kPa Using the Cold Air Standard Assumptions. Calculate the thermal efficiency of the gas turbine (in percent).

  • 1. A combustion turbine possesses the following characteristics: Compressor 97 kPa and 30。C inlet conditions Pressure...

    1. A combustion turbine possesses the following characteristics: Compressor 97 kPa and 30。C inlet conditions Pressure ratio: 5.5 Isentropic compression efficiency: 0.84 Combustor Outlet temperature: 1000 °C Pressure loss: 3 percent Fuel: natural gas Turbine Exit pressure: 100 kPa Isentropic expansion efficiency: 0.88 Generator Generator efficiency: 0.98 Determine the overall thermal efficiency, the heat rate, and the fuel-to-air ratio

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

  • A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a...

    A combined gas-steam power plant uses a simple gas turbine for the topping cycle and a simple Rankine cycle for the bottoming cycle. Atmospheric air enters the compressor at 101 kPa and 20 °C, and the maximum gas cycle temperature is 1100 °C. The compressor pressure ratio is 8. The gas stream leaves the heat exchanger at the saturation temperature of the steam flowing through the heat exchanger. Steam enters the heat exchanger at a pressure of 6 MPa and...

  • Question B (15 marks) You are to analyze a combined cycle that consists of a gas (air) turbine cy...

    Energy Convertion hello, please help me quickly please please thank you Question B (15 marks) You are to analyze a combined cycle that consists of a gas (air) turbine cycle (top) ttom). The gas cycle has the following operating conditions: inlet pressure to compressor one bar inlet temperature-300 K operating pressure ratio-12 Maxmum allowable temperature 1150 °C adiabatic efficiency for compressor 0.83 adiabatic efficiency for turbine-0.87 - - The exhaust leaves stack at 120 °C after vaporizing water in the...

  • A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a...

    A turboprop engine consists of a diffuser, compressor, combustor, turbine, and nozzle. The turbine drives a propeller as well as the compressor. Air enters the diffuser with a volumetric flow rate of 63.7 m3/s at 40 kPa, 240 K, and a velocity of 180 m/s, and decelerates essentially to zero velocity. The compressor pressure ratio is 9 and the compressor has an isentropic efficiency of 85%. The turbine inlet temperature is 1240 K, and its isentropic efficiency is 85%. The...

  • please show work for all sub parts A combined cycle gas turbine / vapor power plant...

    please show work for all sub parts A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output...

  • please solve h to m .A-7 The gas turbine engines that are used on a military...

    please solve h to m .A-7 The gas turbine engines that are used on a military jet air plane likely consists of a diffuser, compressor, combustor, turbine, afterburmer, and nozzle that are arranged in series as shown in Figure 4.A-7(a) and flying with a velocity of 350 mph. The analysis will be carried out on a component-by component basis. Model the air as an ideal gas and assume that it has constant c and cp R 287.1 Ikg-K and c-1005...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT