Question

A 16.15 g sample of metal heated in a test tube submerged in 100.00 °C water. It was then placed directly into a coffee cup c
0 0
Add a comment Improve this question Transcribed image text
Answer #1

4s.23x 4-18-x (25-ti-12-12) 615.2 9 x (loo-25.11) = 16-15a x 615.28

Add a comment
Know the answer?
Add Answer to:
A 16.15 g sample of metal heated in a test tube submerged in 100.00 °C water....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 16.19 g sample of metal heated in a test tube submerged in 100.00 °C water....

    A 16.19 g sample of metal heated in a test tube submerged in 100.00 °C water. It was then placed directly into a coffee cup calorimeter holding 51.83 g of water at 22.09 °C. The temperature of the water increased to 24.51 °C, determine the specific heat capacity of the metal. 0.4294 If the calorimeter had absorbed 197.8 J and we factored that quantity into our calculations, what would the specific heat of the metal been? 1.69 9°C

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.31°C to 29.10°C. The specific heat capacity of copper metal and water are 0.387 and 4.184, respectively. Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter. Heat capacity of calorimeter...

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.47°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. gr°C g. °C Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the...

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.39°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. - 9 Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter....

  • QUESTION 2 a 17.9 g sample of an unknown metal is heated to 63.1 °C is...

    QUESTION 2 a 17.9 g sample of an unknown metal is heated to 63.1 °C is placed in 18.5 g of water in a coffee cup calorimeter causing the temperature of the water to raise from 23.0°C to 25.3 °C. Calculate the heat released by the metal. The specific heat of the metal is 0.655J/g °C.x

  • 2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and...

    2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0°C. The final temperature of the metal + water is 25.3 °C. Calculate the specific heat of metal alloy, in J/(g°C), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/(g°C).

  • A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then...

    A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0oC. The final temperature of the metal + water is 25.3 oC. Calculate the specific heat of metal alloy, in J/(g oC), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/(g oC).

  • A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The...

    A 45.90 g sample of pure copper is heated in a test tube to 99.40°C. The copper sample is then transferred to a calorimeter containing 61.04 g of deionized water. The water temperature in the calorimeter rises from 24.47°C to 29.10°C. The specific heat capacity of copper metal and water are J J 0.387 and 4.184 respectively. g•°C g.°C' Assuming that heat was transferred from the copper to the water and the calorimeter, determine the heat capacity of the calorimeter....

  • A 60.80 gram sample of iron (with a heat capacity of 0.450 J/g◦C) is heated to...

    A 60.80 gram sample of iron (with a heat capacity of 0.450 J/g◦C) is heated to 100.00 ◦ It is then transferred to a coffee cup calorimeter containing 52.42 g of water (specific heat of 4.184 J/ g◦C) initially at 20.47 ◦C. If the final temperature of the system is 28.78, what was the heat gained by the calorimeter? If the calorimeter had a mass of 25.19 g, what is the heat capacity of the calorimeter?

  • Following the procedure in lab, a student heated their 36.353 g metal sample to 100.0°C ....

    Following the procedure in lab, a student heated their 36.353 g metal sample to 100.0°C . The metal was added to a coffee cup calorimeter containing 20.079 g of water at 21.9 *C . The final temperature of the water was 36 "С . Assuming no heat was absorbed by the calorimeter, calculate the specific heat of the metal. Report your answer in units of

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT