Question

ne cycle adds and removes heat and removes work from aworking fluid (usually steam) to convert work. The working fluid goes
0 0
Add a comment Improve this question Transcribed image text
Answer #1

USING STEAM PROPERTY TABLES, SPECIFIC ENTHALPY & ENTROPY OF EACH STATE IS DETERMINED AS REQUIRED. FROM ISENTROPIC ANALYSIS OF PUMP & TURBINE, WE DETERMINE ACTUAL ENTHALPY OF TURBINE & PUMP EXIT STREAMS. THEN PART A,B & C ARE SOLVED USING ENTHALPY BALANCE.

SHEET- BCILEP WPUNP PUM CONDENSER 41 RANKINE CYCLE Tor haduro cl shelo 3, T3: 6。。。C =Tu = (60° +773.IS)K_073. SK Part ca 3,곡 . 37044-0.83195+ 구、07528 T4 g 24130 lig, 4=25, , 399741 -R부-QSl . 399344(Q608.9424S-2SI. 39934)米0 .924132 ,·A/ = 24 30.0UJQ 9 , Pump 4.04 568 kJ/kg 9 別2CP S1.39974 259. To 8916 4 6M O 30803 8S O.618383

DEAR STUDENT, IF YOU HAVE ANY QUERY KINDLY ASK ME. I SHALL DEFINITELY HELP IN RESOLVING YOUR QUERY. PLEASE ASK ME. THANK YOU.

Add a comment
Know the answer?
Add Answer to:
ne cycle adds and removes heat and removes work from a"working fluid" (usually steam) to convert...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...

    Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 MW. Steam enters the high-pressure turbine at 10 MPa and 400°C and the low-pressure turbine at 1 MPa and 400°C. Water leaves the condenser as a saturated liquid at a pressure of 100 kPa. The isentropic efficiency of the high-pressure turbine is 85% and the low-pressure turbine in 100%. The pump has an isentropic efficiency of...

  • Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated...

    Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated vapor enters the turbine at 100 bar and saturated liquid exits the condenser at a pressure of 0.1 bar. The net power output of the cycle, Weycle, is 150 MW. Isentropic efficiency of the turbine and the pump (n (hi-h2)/(h1-h2s), np=(h25-h1)/(h2-h1)) are both 80%. Determine the followings. [30 pts] (a) Thermal efficiency, n (b) Mass flow rate of the steam, m, in kg/s (c)...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Thermodynamics 1. Saturated liquid H20 at 16 MPa is fed into the boiler of a variant of a Carnot cycle (but simplified Rankin cycle) where the working fluid is not an ideal gas. Saturated H20 va...

    Thermodynamics 1. Saturated liquid H20 at 16 MPa is fed into the boiler of a variant of a Carnot cycle (but simplified Rankin cycle) where the working fluid is not an ideal gas. Saturated H20 vapor is fed into the turbine of the same turbine. The condenser of this turbine is operated at 8 kPa. The mass flowrate of the H20 in this cycle is 7.2x103 kg/min. Draw the path of this process on T-s diagram. Estimate the thermal efficiency...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

  • Water is the working fluid in a modified Rankine cycle with superheat and reheat. Water as...

    Water is the working fluid in a modified Rankine cycle with superheat and reheat. Water as superheated vapor enters the high-pressure stage turbine at 60 bar and 440 C and leaves at 5 bar as liquid-vapor mixture with a quality of xa-0.98. It is then reheated to 400 °C at the same pressure of 5 bar before entering the second stage turbine where it expands to a pressure of 0.1 bar and a mixture quality of x0.96. The condenser pressure...

  • 4. Water is the working fluid in a Carnot vapor power cycle. Saturated liquid enters the...

    4. Water is the working fluid in a Carnot vapor power cycle. Saturated liquid enters the boiler at 16 MPa, and saturated vapor enters the turbine. The condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 120 kg/s. Determine (a) the thermal efficiency. (b) the back work ratio. (c) the net power developed, in kW. (d) the rate of heat transfer from the working fluid passing through the condenser, in kW.

  • Include given, find, EFD, assumptions, basic equations and solution Water is the working fluid in a...

    Include given, find, EFD, assumptions, basic equations and solution Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 MPa, 480 °C, and the condenser pressure is 6 kPa. Water exits the condenser as a saturated liquid. The turbine and pump have isentropic efficiencies of 80 and 70%, respectively. Determine for the cycle a) work developed by the turbine, in kJ per kg of steam flowing (b) work consumed by the pump, in k.J...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT