Question

11 - The following data is given for an ideal vapor-compression refrigeration cycle: At the inlet of the compressor h=250 kJ/

0 0
Add a comment Improve this question Transcribed image text
Answer #1
  • In an ideal vapour compression refrigeration cycle process 3-4 iso-enthalpic process.
  • In this problem two conditions are given for processe 3-4. One at the exit of condenser (i.e. h3) and one at inlet of evaporator( i.e h4)
  • According to standard Vapour compression refrigeration cycle h3=h4 and h2>h1>h3
  • But h3>h1 given in problem which is wrong. Taking enthalpy at inlet of condenser as h2=400 kJ/kgCriven) Ideal Vapour compression Refrigeration Gale hi= 250 KI 1 kg ha = 400 kJ 1 kq ha = hq = 75 kilke Visentropic 80% 1 P T
Add a comment
Know the answer?
Add Answer to:
11 - The following data is given for an ideal vapor-compression refrigeration cycle: At the inlet...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There are irreversibilities in the compressor. The refrigerant enters the condenser at 16 bar and 160 °C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Calculate the coefficient of performance, b, and the isentropic compressor efficiency, defined as: 2s Condenser Expansion...

  • The mass flow rate of R-134a in a vapor-compression refrigeration cycle is 6 kg/min

    The mass flow rate of R-134a in a vapor-compression refrigeration cycle is 6 kg/min. At the inlet of the compressor, R-134a is at -10°C, 150 kPa. The pressure at the compressor exit is 600 kPa. The compressor has an isentropic efficiency of 67%. The refrigerant leaves the condenser at 20°C. Neglect any pressure drops in the condenser, the evaporator, and pipes. Assume an adiabatic compressor. (a)draw the cycle and the T-s diagram of the cycle. Also find: (b)the coefficient of the performance...

  • In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at...

    In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at -22°C (State 1 ) .. -   Ammonia enters the condenser at 16 Bar and 160°C (State 2; h2 = 1798.45 kJ/kg) -   Ammonia exits the condenser as saturated l1quid at 16 Bar (State 3; h3 = 376.46 kJ/kg) -   The refrigeration capacity is 150 kW. Draw the system schematic and the T-s diagram and determine: i)   the mass flow rate· of refrigerant, ii)   the...

  • Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with...

    Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with ammonia as the working fluid, has an evaporator temperature of -20°C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of refrigerant is 3 kg/minute. Determine the coefficient of performance and the refrigerating capacity in tons. Given: Find: T-s Process Diagram: Schematic Assume:

  • 4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- f...

    4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown below.Ammonia leaves the evaporator as saturated vapor at 1.0 bar and is heated at constant pressure to S "C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow rate of...

  • An ideal vapor compression refrigeration cycle uses refrigerant 12 as a working fluid in an air...

    An ideal vapor compression refrigeration cycle uses refrigerant 12 as a working fluid in an air conditioning system. The refrigerant enter the compressor as saturated vapor at 5oC and leaves the condenser as saturated liquid at 55oC. The mass flow rate of refrigerant is 0.7 kg/s. Heat is transferred from a reservoir at 15oC (the cool space) to the refrigerant in the evaporator and the heat rejected by the condenser is transferred to the environment which is at a temperature...

  • 2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat...

    2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown below. Ammonia leaves the evaporator as saturated vapor at 1.0 bar and is heated at constant pressure to 5 "C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40 C, 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow...

  • Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as...

    Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as shown. Refrigerant 134a leaves the evaporator as saturated vapor at 0.10 MPa and is heated at constant pressure to 20°C before entering the compressor. Following isentropic compression to 1.4 MPa, the refrigerant passes through the condenser and exits at 45°C and 1.4 MPa. The liquid then passes through the heat exchanger and enters the expansion valve at 1.4 MPa. The mass flow rate of...

  • 1. Wet Compression Refrigerator A standard vapor-compression refrigeration system produces 20 tons of refrigeration using R-12...

    1. Wet Compression Refrigerator A standard vapor-compression refrigeration system produces 20 tons of refrigeration using R-12 as a and an evaporator temperature of -33 °C. The system runs on the wet compression cycle. Determine (a) the refrigeration in [kJ/kg], (b) the circulating rate of R-12 in [kg/s], (c) the power required, (d) the COR, (e) the heat rejected in [kW], and (f) the volume flowrate of refrigerant at compressor inlet conditions. qin 87.5 kJ/kg COR 2.16 refrigerant while operating between...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT