Question

PROBLEM 1. Consider a Rankine cycle, where steam enters the turbine @ 5 Mpa, 500 *C and excits at 12.35 kPa. The cycle produc
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sol 5MPa 7500°C Dailes Turbine condengoo 12.35 kPa SOOC 5 MPa -12.3ShPaBoblem 1 Enthalpy at the inlet of tus bine thel. Enthalpy at SMPa 6 500°C ho - 3433-45 KI/kg Entopy (S.) = 6.9852 killega ConEnthalupy nad Stade (3) le saturated liquid wat 12.36 upa! hy he at 12ssura = 209.4 Ks 1kg The = 209.4 kilks wook input to ppNo Effecienicy lth dinput = 1194.95 3219.303 thermal = 0. 37 11 thermal = 39.11 % te Now Electivity Produced (wl10000 Wilsec.

Add a comment
Know the answer?
Add Answer to:
PROBLEM 1. Consider a Rankine cycle, where steam enters the turbine @ 5 Mpa, 500 *C...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an ideal steam regenerative cycle in which steam enters the turbine at 3.0 MPa, 400°C,...

    Consider an ideal steam regenerative cycle in which steam enters the turbine at 3.0 MPa, 400°C, and exhausts to the condenser at 10 kPa. Steam is extracted from the turbine at 0.8 MPa to an open feedwater heater. The feed water leaves the heater as saturated liquid. The appropriate pumps are used for 2 the water leaving the condenser and the feed-water heater. Calculate (a) the thermal efficiency of the cycle, (b) the net work per kilogram of steam, and...

  • In a regenerative ideal Rankine cycle, hot water steam enters the turbine at 10 MPa and...

    In a regenerative ideal Rankine cycle, hot water steam enters the turbine at 10 MPa and 480°C. condenser inlet pressure is 10 kPa. Some steam is taken from the turbine at a pressure of 0.7 MPa, feeds a Closed Feed water heater and is sent to the condenser as a saturated liquid at a pressure of 0.7 MPa at the outlet. The other outlet (cold) is at a pressure of 10 MPa and a saturation temperature of 0.7 MPa. According...

  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • please use Rankine cycle. write the solution clearly 5. (25 points) Consider an ideal steam regenerative...

    please use Rankine cycle. write the solution clearly 5. (25 points) Consider an ideal steam regenerative Rankine cycle in which steam enters the turbine at 3.0 MPa, 400°C, and exhausts to the condenser at 10 kPa. Steam is extracted from the turbine at 0.8 MPa for an open feedwater heater. The feedwater leaves the heater as saturated liquid. The appropriate pumps are used for the water leaving the condenser and the feedwater heater. Calculate the thermal efficiency of the cycle...

  • 01: Steam enters the first turbine at 15.0 MPa and 600°C. The pressure in the condenser...

    01: Steam enters the first turbine at 15.0 MPa and 600°C. The pressure in the condenser is 20.0 kPa. While some steam is extracted from the high-pressure turbine at 5 MPa and sent to the closed feedwater heater, the remaining steam is reheated to 600°C. The extracted steam is condensed as saturated liquid at 5.0 MPa and trapped to the open feedwater heater. Some steam is extracted from the lower-pressure turbine at 1.0 MPa and sent to the open feedwater...

  • P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at...

    P8-29 A closed feedwater heater is used in a Rankine cycle Steam leaves the boiler at 20 MPa, 600°C. Between the high and low-pressure turbines, steam at 1 MPa is extracted and delivered to the closed feedwater heater. Feedwater exits the feedwater heater at 20 MPa and the saturation temperature of the 1-MPa steam; saturated liquid condensate is fed through a steam trap back to the condenser. Steam from the second- stage turbine enters the condenser at 10 kPa, and...

  • Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to th...

    Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 5 MPa and 500°C and is condensed in the condenser at a pressure of 50 kPa. Heat is supplied to the steam in a furnace maintained at 800 K, and waste heat is rejected to the surroundings at 300 K. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the net work output, (b) the thermal efficiency...

  • Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature...

    Steam generated in a Rankine steam power cycle at a pressure of 8 MPa and temperature 600oC is fed to a turbine. Exhaust from the turbine enters a condenser at 100 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. (a) (20 pts.) What is the thermal efficiency η of an ideal Rankine cycle operating at these conditions? (b) (5 pts.) If the net power production of the cycle is 80,000 kW, what is...

  • 10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throt- tled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and...

  • A steam power plant design consists of an ideal Rankine cycle with regeneration. Steam enters Turbine...

    A steam power plant design consists of an ideal Rankine cycle with regeneration. Steam enters Turbine 1 at P1 and T1 at the rate of m1 and exits at P2. A fraction (y') of the steam exiting Turbine 1 is diverted to a closed feedwater heater while the remainder enters Turbine 2. A portion (y'') of the steam exiting Turbine 2 at P3 is diverted to an open feedwater heater while the remainder enters Turbine 3. The exit of Turbine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT