Question

Chapter 11, Problem 010 A hollow sphere of radius 0.240 m, with rotational inertia 0.0388 kg.m2 about a line through its center of mass, rolls without slipping up a surface inclined at 42.1o to the horizontal. At a certain initial position, the spheres total kinetic energy is 7.50 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.740 m up the incline from its initial position, what are (c) its total kinetic energy and (d) the speed of its center of mass? (a) Number (b) Number (c) Number (d) Number Units Units m/s Units Units m/s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 2 31 V-구, 50了 97 vane. 2.geuuwils/ Au) to _一ーVALb PS 2 496m = 7. 50-8H (ag)@wg6) | 96 C )(824)ㄴ 歼 2-588 J. es 96 2. (5)(10388) 51 ,

Add a comment
Know the answer?
Add Answer to:
Chapter 11, Problem 010 A hollow sphere of radius 0.240 m, with rotational inertia 0.0388 kg.m2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A hollow sphere of radius 0.240 m, with rotational inertia I = 0.0470 kg·m2 about a...

    A hollow sphere of radius 0.240 m, with rotational inertia I = 0.0470 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 13.3° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 12.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.690...

  • Question 11 A hollow sphere of radius 0.220 m, with rotational inertia I = 0.0728 kg-m2...

    Question 11 A hollow sphere of radius 0.220 m, with rotational inertia I = 0.0728 kg-m2 about a line through its center of mass, rolls without slipping up a surface inclined at 33.7° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 36.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has...

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • A hollow 0.358 kg sphere rolls without slipping down an inclined plane that makes an angle...

    A hollow 0.358 kg sphere rolls without slipping down an inclined plane that makes an angle of 41.0o with the horizontal direction. The sphere is released from rest a distance 0.734 m from the lower end of the plane. a. How fast is the hollow sphere moving as it reaches the end of the plane? b. At the bottom of the incline, what fraction of the total kinetic energy of the hollow sphere is rotational kinetic energy?

  • A solid homogeneous sphere of mass M = 4.70 kg is released from rest at the...

    A solid homogeneous sphere of mass M = 4.70 kg is released from rest at the top of an incline of height H=1.21 m and rolls without slipping to the bottom. The ramp is at an angle of θ = 27.7o to the horizontal. a) Calculate the speed of the sphere's CM at the bottom of the incline.​ b) Determine the rotational kinetic energy of the sphere at the bottom of the incline.

  • A solid sphere rolls in released from rest and rolls down an incline plane, which is...

    A solid sphere rolls in released from rest and rolls down an incline plane, which is 2.0 m long and inclined at a 30° angle from the horizontal. (a) Find its speed at the bottom of the incline. (Remember that the kinetic energy in rolling motion is the translational kinetic energy ½ Mv2 of the center, plus the rotational K.E. ½ Iω2 about the center. Also remember that v = ωr if the sphere rolls without slipping.) (b) Find the...

  • QUESTION 8 A sphere of mass 35.0 kg and radius 2.10 m is rolling on a...

    QUESTION 8 A sphere of mass 35.0 kg and radius 2.10 m is rolling on a horizontal surface without slipping. What is the moment of inertia of the sphere with respect to an axis through its center? 1250 Handout-oneline test 20205.pdf O^ 29.4 kg.m2 OB 61.7 kg.m2 OC. 73.5 kg.m2 OD. 150 kgm? OE 77.2 kg.m2 QUESTION 9 If the sphere (.e. its center of mass) moves with a speed of 14.6 m/s in the problem above, what is rotational...

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • please help with problem 53 Rotational Motion Problem Solving "An expert is a person who has...

    please help with problem 53 Rotational Motion Problem Solving "An expert is a person who has made all the mistakes that can be made in a very narrow field." -Niels Bohr 53. An inclined plane makes an angle of with the horizontal, as shown above. A solid sphere of radius R and mass M is initially at rest in the position shown, such that the lowest point of the sphere is a vertical height h above the base of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT